Mendenhall Marcus H
National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899 USA.
Powder Diffr. 2018;33. doi: 10.1017/S0885715618000726.
This work provides a short summary of techniques for formally-correct handling of statistical uncertainties in Poisson-statistics dominated data, with emphasis on X-ray powder diffraction patterns. Correct assignment of uncertainties for low counts is documented. Further, we describe a technique for adaptively rebinning such data sets to provide more uniform statistics across a pattern with a wide range of count rates, from a few (or no) counts in a background bin to on-peak regions with many counts. This permits better plotting of data and analysis of a smaller number of points in a fitting package, without significant degradation of the information content of the data set. Examples of the effect of this on a diffraction data set are given.
这项工作简要总结了在泊松统计主导的数据中对统计不确定性进行形式正确处理的技术,重点是X射线粉末衍射图谱。记录了低计数情况下不确定性的正确赋值。此外,我们描述了一种对这类数据集进行自适应重新分箱的技术,以便在计数率范围广泛的整个图谱中提供更均匀的统计数据,从背景箱中的少数(或无)计数到有许多计数的峰区。这使得数据能更好地绘图,并在拟合程序中分析较少的点,而不会显著降低数据集的信息含量。文中给出了这对衍射数据集影响的示例。