School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA.
Sci Adv. 2019 Apr 17;5(4):eaav6326. doi: 10.1126/sciadv.aav6326. eCollection 2019 Apr.
Across mammalian species, solute exchange takes place in complex microvascular networks. In the human placenta, the primary exchange units are terminal villi that contain disordered networks of fetal capillaries and are surrounded externally by maternal blood. We show how the irregular internal structure of a terminal villus determines its exchange capacity for diverse solutes. Distilling geometric features into three parameters, obtained from image analysis and computational fluid dynamics, we capture archetypal features of the structure-function relationship of terminal villi using a simple algebraic approximation, revealing transitions between flow- and diffusion-limited transport at vessel and network levels. Our theory accommodates countercurrent effects, incorporates nonlinear blood rheology, and offers an efficient method for testing network robustness. Our results show how physical estimates of solute transport, based on carefully defined geometrical statistics, provide a viable method for linking placental structure and function and offer a framework for assessing transport in other microvascular systems.
在哺乳动物物种中,溶质交换发生在复杂的微血管网络中。在人胎盘内,主要的交换单位是末端绒毛,其包含胎儿毛细血管的无序网络,并被母体血液包围在外部。我们展示了末端绒毛的不规则内部结构如何决定其对各种溶质的交换能力。通过从图像分析和计算流体动力学中获得的三个参数来提取几何特征,我们使用简单的代数逼近来捕获末端绒毛结构-功能关系的典型特征,揭示了在血管和网络水平上的流动限制和扩散限制传输之间的转变。我们的理论容纳了逆流效应,包含了非线性血液流变学,并提供了一种测试网络鲁棒性的有效方法。我们的结果表明,基于仔细定义的几何统计数据的溶质传输的物理估计值为连接胎盘结构和功能提供了一种可行的方法,并为评估其他微血管系统中的传输提供了一个框架。