Suppr超能文献

随机基因集预测肝细胞癌患者的生存。

Random gene sets in predicting survival of patients with hepatocellular carcinoma.

机构信息

Division of Hepatology & Division of Clinical Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.

Statistical Bioinformatics, Department of Functional Genomics, University Medical Center, Regensburg, Germany.

出版信息

J Mol Med (Berl). 2019 Jun;97(6):879-888. doi: 10.1007/s00109-019-01764-2. Epub 2019 Apr 17.

Abstract

Despite multiple publications, molecular signatures predicting the course of hepatocellular carcinoma (HCC) have not yet been integrated into clinical routine decision-making. Given the diversity of published signatures, optimal number, best combinations, and benefit of functional associations of genes in prognostic signatures remain to be defined. We investigated a vast number of randomly chosen gene sets (varying between 1 and 10,000 genes) to encompass the full range of prognostic gene sets on 242 transcriptomic profiles of patients with HCC. Depending on the selected size, 4.7 to 23.5% of all random gene sets exhibit prognostic potential by separating patient subgroups with significantly diverse survival. This was further substantiated by investigating gene sets and signaling pathways also resulting in a comparable high number of significantly prognostic gene sets. However, combining multiple random gene sets using "swarm intelligence" resulted in a significantly improved predictability for approximately 63% of all patients. In these patients, approx. 70% of all random 50-gene containing gene sets resulted in equal and stable prediction of survival. For all other patients, a reliable prediction seems highly unlikely for any selected gene set. Using a machine learning and independent validation approach, we demonstrated a high reliability of random gene sets and swarm intelligence in HCC prognosis. Ultimately, these findings were validated in two independent patient cohorts and independent technical platforms (microarray, RNASeq). In conclusion, we demonstrate that using "swarm intelligence" of multiple gene sets for prognosis prediction may not only be superior but also more robust for predictive purposes. KEY MESSAGES: Molecular signatures predicting HCC have not yet been integrated into clinical routine Depending on the selected size, 4.7 to 23.5% of all random gene sets exhibit prognostic potential; independent of the technical platform (microarray, RNASeq) Using "swarm intelligence" resulted in a significantly improved predictability In these patients, approx. 70% of all random 50-gene containing gene sets resulted in equal and stable prediction of survival Overall, "swarm intelligence" is superior and more robust for predictive purposes in HCC.

摘要

尽管已经有很多出版物,但能够预测肝细胞癌(HCC)病程的分子特征尚未被纳入临床常规决策。鉴于已发表的特征具有多样性,最佳数量、最佳组合以及预后特征中基因功能关联的获益仍有待确定。我们研究了大量随机选择的基因集(范围从 1 到 10000 个基因),以涵盖 242 例 HCC 患者转录组谱中所有预后基因集的范围。根据所选大小,4.7%至 23.5%的所有随机基因集通过将具有明显不同生存情况的患者亚组分开来显示预后潜力。通过研究基因集和信号通路,也得到了可比数量的具有显著预后的基因集,进一步证实了这一点。然而,使用“群体智能”组合多个随机基因集,可使大约 63%的所有患者的可预测性得到显著提高。在这些患者中,约 70%的所有包含 50 个随机基因的基因集的生存预测结果相等且稳定。对于所有其他患者,任何选定的基因集似乎都不太可能进行可靠预测。通过机器学习和独立验证方法,我们证明了随机基因集和群体智能在 HCC 预后中的高可靠性。最终,这些发现通过两个独立的患者队列和独立的技术平台(微阵列、RNAseq)得到了验证。总之,我们证明了使用多个基因集的“群体智能”进行预后预测不仅可能更优越,而且更稳健。关键信息: 预测 HCC 的分子特征尚未纳入临床常规决策。 根据所选大小,4.7%至 23.5%的所有随机基因集均具有预后潜力;与技术平台(微阵列、RNAseq)无关。 使用“群体智能”可显著提高可预测性。 在这些患者中,约 70%的所有包含 50 个随机基因的基因集的生存预测结果相等且稳定。 总体而言,“群体智能”在 HCC 预测方面更优越且更稳健。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验