Suppr超能文献

一份关于使用距离度量来比较生态学中时间序列的用户友好指南。

A user-friendly guide to using distance measures to compare time series in ecology.

作者信息

Dove Shawn, Böhm Monika, Freeman Robin, Jellesmark Sean, Murrell David J

机构信息

Centre for Biodiversity and Environment Research University College London London UK.

Institute of Zoology, Zoological Society of London London UK.

出版信息

Ecol Evol. 2023 Oct 5;13(10):e10520. doi: 10.1002/ece3.10520. eCollection 2023 Oct.

Abstract

Time series are a critical component of ecological analysis, used to track changes in biotic and abiotic variables. Information can be extracted from the properties of time series for tasks such as classification (e.g., assigning species to individual bird calls); clustering (e.g., clustering similar responses in population dynamics to abrupt changes in the environment or management interventions); prediction (e.g., accuracy of model predictions to original time series data); and anomaly detection (e.g., detecting possible catastrophic events from population time series). These common tasks in ecological research all rely on the notion of (dis-) similarity, which can be determined using distance measures. A plethora of distance measures have been described, predominantly in the computer and information sciences, but many have not been introduced to ecologists. Furthermore, little is known about how to select appropriate distance measures for time-series-related tasks. Therefore, many potential applications remain unexplored. Here, we describe 16 properties of distance measures that are likely to be of importance to a variety of ecological questions involving time series. We then test 42 distance measures for each property and use the results to develop an objective method to select appropriate distance measures for any task and ecological dataset. We demonstrate our selection method by applying it to a set of real-world data on breeding bird populations in the UK and discuss other potential applications for distance measures, along with associated technical issues common in ecology. Our real-world population trends exhibit a common challenge for time series comparisons: a high level of stochasticity. We demonstrate two different ways of overcoming this challenge, first by selecting distance measures with properties that make them well suited to comparing noisy time series and second by applying a smoothing algorithm before selecting appropriate distance measures. In both cases, the distance measures chosen through our selection method are not only fit-for-purpose but are consistent in their rankings of the population trends. The results of our study should lead to an improved understanding of, and greater scope for, the use of distance measures for comparing ecological time series and help us answer new ecological questions.

摘要

时间序列是生态分析的关键组成部分,用于追踪生物和非生物变量的变化。可以从时间序列的属性中提取信息,以完成诸如分类(例如,将物种与个体鸟鸣声进行匹配)、聚类(例如,将种群动态中对环境突然变化或管理干预的类似反应进行聚类)、预测(例如,模型预测相对于原始时间序列数据的准确性)以及异常检测(例如,从种群时间序列中检测可能的灾难性事件)等任务。生态研究中的这些常见任务均依赖于(不)相似性的概念,而这可以通过距离度量来确定。已经描述了大量的距离度量方法,主要集中在计算机和信息科学领域,但许多方法尚未被生态学家所了解。此外,对于如何为与时间序列相关的任务选择合适的距离度量方法,人们了解甚少。因此,许多潜在应用仍未得到探索。在此,我们描述了距离度量的16个属性,这些属性可能对涉及时间序列的各种生态问题至关重要。然后,我们针对每个属性测试了42种距离度量方法,并利用结果开发了一种客观方法,可为任何任务和生态数据集选择合适的距离度量方法。我们通过将选择方法应用于一组关于英国繁殖鸟类种群的实际数据来展示该方法,并讨论距离度量的其他潜在应用以及生态学中常见的相关技术问题。我们的实际种群趋势展现了时间序列比较中一个常见的挑战:高度的随机性。我们展示了两种克服这一挑战的不同方法,第一种是选择具有使其非常适合比较有噪声时间序列的属性的距离度量方法,第二种是在选择合适的距离度量方法之前应用平滑算法。在这两种情况下,通过我们的选择方法选择的距离度量方法不仅符合目的,而且在种群趋势排名中保持一致。我们的研究结果应有助于增进对用于比较生态时间序列的距离度量方法的理解,并扩大其使用范围,帮助我们回答新的生态问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a22/10551742/d034db724862/ECE3-13-e10520-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验