Suppr超能文献

基于卷积神经网络的数字牙科 X 射线图像识别。

Recognition of Digital Dental X-ray Images Using a Convolutional Neural Network.

机构信息

School of Information Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.

Department of First Operating Room, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.

出版信息

J Digit Imaging. 2023 Feb;36(1):73-79. doi: 10.1007/s10278-022-00694-9. Epub 2022 Sep 15.

Abstract

Digital dental X-ray images are an important basis for diagnosing dental diseases, especially endodontic and periodontal diseases. Conventional diagnostic methods depend on the experience of doctors, so they are highly subjective and consume more energy than other approaches. The current computer-aided interpretation technology has low accuracy and poor lesion classification. This study proposes an efficient and accurate method for identifying common lesions in digital dental X-ray images by a convolutional neural network (CNN). In total, 188 digital dental X-ray images that were previously diagnosed as periapical periodontitis, dental caries, periapical cysts, and other common dental diseases by dentists in Qilu Hospital of Shandong University were collected and augmented. The images and labels were inputted into four CNN models for training, including visual geometry group (VGG)-16, InceptionV3, residual network (ResNet)-50, and densely connected convolutional networks (DenseNet)-121. The average classification accuracy of the four trained network models on the test set was 95.9%, while the classification accuracy of the trained DenseNet-121 network model reached 99.5%. It is demonstrated that the use of CNNs to interpret digital dental X-ray images is an efficient and accurate way to conduct auxiliary diagnoses of dental diseases.

摘要

数字牙科 X 射线图像是诊断牙科疾病(尤其是牙髓病和牙周病)的重要基础。传统的诊断方法依赖于医生的经验,因此具有高度的主观性,并且比其他方法消耗更多的能量。当前的计算机辅助解释技术的准确性较低,病变分类效果较差。本研究通过卷积神经网络(CNN)提出了一种用于识别数字牙科 X 射线图像中常见病变的高效准确方法。共收集了山东大学齐鲁医院此前由牙医诊断为根尖周炎、龋齿、根尖囊肿和其他常见牙科疾病的 188 张数字牙科 X 射线图像,并对其进行了扩充。将图像和标签输入到四个 CNN 模型中进行训练,包括视觉几何组(VGG)-16、InceptionV3、残差网络(ResNet)-50 和密集连接卷积网络(DenseNet)-121。四个训练网络模型在测试集上的平均分类准确率为 95.9%,而训练的 DenseNet-121 网络模型的分类准确率达到了 99.5%。结果表明,使用 CNN 来解释数字牙科 X 射线图像是一种进行牙科疾病辅助诊断的有效且准确的方法。

相似文献

引用本文的文献

本文引用的文献

2
Pulmonary nodule detection in CT scans with equivariant CNNs.基于等变卷积神经网络的 CT 扫描肺结节检测
Med Image Anal. 2019 Jul;55:15-26. doi: 10.1016/j.media.2019.03.010. Epub 2019 Mar 28.
6
Reducing the dimensionality of data with neural networks.使用神经网络降低数据维度。
Science. 2006 Jul 28;313(5786):504-7. doi: 10.1126/science.1127647.
7
A fast learning algorithm for deep belief nets.一种用于深度信念网络的快速学习算法。
Neural Comput. 2006 Jul;18(7):1527-54. doi: 10.1162/neco.2006.18.7.1527.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验