Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, 03722, Korea.
Plant J. 2019 Aug;99(3):571-582. doi: 10.1111/tpj.14341. Epub 2019 May 16.
Maize (Zea mays) has multiple uses in human food, animal fodder, starch and sweetener production and as a biofuel, and is accordingly the most extensively cultivated cereal worldwide. To enhance maize production, genetic factors underlying important agricultural traits, including stress tolerance and flowering, have been explored through forward and reverse genetics approaches. Co-functional gene networks are systems biology resources useful in identifying trait-associated genes in plants by prioritizing candidate genes. Here, we present MaizeNet (http://www.inetbio.org/maizenet/), a genome-scale co-functional network of Z. mays genes, and a companion web server for network-assisted systems genetics. We describe the validation of MaizeNet network quality and its ability to functionally predict molecular pathways and complex traits in maize. Furthermore, we demonstrate that MaizeNet-based prioritization of candidate genes can facilitate the identification of cell wall biosynthesis genes and detect network communities associated with flowering-time candidate genes derived from genome-wide association studies. The demonstrated gene prioritization and subnetwork analysis can be conducted by simply submitting maize gene models based on the commonly used B73 RefGen_v3 and the latest B73 RefGen_v4 reference genomes on the MaizeNet web server. MaizeNet-based network-assisted systems genetics will substantially accelerate the discovery of trait-associated genes for crop improvement.
玉米(Zea mays)在人类食品、动物饲料、淀粉和甜味剂生产以及生物燃料方面有多种用途,因此是全球种植最广泛的谷物。为了提高玉米产量,人们通过正向和反向遗传学方法探索了重要农业性状(包括耐胁迫和开花)的遗传因素。共功能基因网络是系统生物学资源,可通过优先考虑候选基因来鉴定植物中与性状相关的基因。在这里,我们介绍了 MaizeNet(http://www.inetbio.org/maizenet/),这是一个基于玉米的全基因组共功能基因网络,以及一个用于网络辅助系统遗传学的配套网络服务器。我们描述了 MaizeNet 网络质量的验证及其在预测玉米中分子途径和复杂性状方面的功能。此外,我们证明了基于 MaizeNet 的候选基因优先级排序可以促进细胞壁生物合成基因的鉴定,并检测来自全基因组关联研究的开花时间候选基因的网络社区。通过在 MaizeNet 网络服务器上提交基于常用 B73 RefGen_v3 和最新 B73 RefGen_v4 参考基因组的玉米基因模型,即可进行基因优先级排序和子网络分析。基于 MaizeNet 的网络辅助系统遗传学将大大加速与作物改良相关的性状相关基因的发现。