Suppr超能文献

easyMF:一个基于矩阵分解的大规模转录组数据基因发现的网络平台。

easyMF: A Web Platform for Matrix Factorization-Based Gene Discovery from Large-scale Transcriptome Data.

机构信息

State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, 712100, China.

Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest Agriculture and Forestry University, Yangling, 712100, China.

出版信息

Interdiscip Sci. 2022 Sep;14(3):746-758. doi: 10.1007/s12539-022-00522-2. Epub 2022 May 18.

Abstract

With the development of high-throughput experimental technologies, large-scale RNA sequencing (RNA-Seq) data have been and continue to be produced, but have led to challenges in extracting relevant biological knowledge hidden in the produced high-dimensional gene expression matrices. Here, we develop easyMF ( https://github.com/cma2015/easyMF ), a web platform that can facilitate functional gene discovery from large-scale transcriptome data using matrix factorization (MF) algorithms. Compared with existing MF-based software packages, easyMF exhibits several promising features, such as greater functionality, flexibility and ease of use. The easyMF platform is equipped using the Big-Data-supported Galaxy system with user-friendly graphic user interfaces, allowing users with little programming experience to streamline transcriptome analysis from raw reads to gene expression, carry out multiple-scenario MF analysis, and perform multiple-way MF-based gene discovery. easyMF is also powered with the advanced packing technology to enhance ease of use under different operating systems and computational environments. We illustrated the application of easyMF for seed gene discovery from temporal, spatial, and integrated RNA-Seq datasets of maize (Zea mays L.), resulting in the identification of 3,167 seed stage-specific, 1,849 seed compartment-specific, and 774 seed-specific genes, respectively. The present results also indicated that easyMF can prioritize seed-related genes with superior prediction performance over the state-of-art network-based gene prioritization system MaizeNet. As a modular, containerized and open-source platform, easyMF can be further customized to satisfy users' specific demands of functional gene discovery and deployed as a web service for broad applications.

摘要

随着高通量实验技术的发展,大规模 RNA 测序 (RNA-Seq) 数据已经并将继续产生,但这也给从产生的高维基因表达矩阵中提取隐藏的相关生物知识带来了挑战。在这里,我们开发了 easyMF(https://github.com/cma2015/easyMF),这是一个使用矩阵分解 (MF) 算法从大规模转录组数据中促进功能基因发现的网络平台。与现有的基于 MF 的软件包相比,easyMF 具有几个有前途的功能,如更大的功能、灵活性和易用性。easyMF 平台配备了支持大数据的 Galaxy 系统,具有用户友好的图形用户界面,允许具有少量编程经验的用户简化从原始读取到基因表达的转录组分析,进行多种情景 MF 分析,并进行基于 MF 的多种方式基因发现。easyMF 还采用了先进的包装技术,增强了在不同操作系统和计算环境下的易用性。我们展示了 easyMF 在玉米(Zea mays L.)的时间、空间和综合 RNA-Seq 数据集的种子基因发现中的应用,分别鉴定了 3167 个种子阶段特异性、1849 个种子区室特异性和 774 个种子特异性基因。目前的结果还表明,easyMF 可以优先考虑与种子相关的基因,其预测性能优于最先进的基于网络的基因优先级系统 MaizeNet。作为一个模块化、容器化和开源平台,easyMF 可以进一步定制以满足用户对功能基因发现的特定需求,并作为网络服务进行广泛应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验