Suppr超能文献

具有高维协变量的Cox模型的向前回归

Forward regression for Cox models with high-dimensional covariates.

作者信息

Hong Hyokyoung G, Zheng Qi, Li Yi

机构信息

Department of Statistics and Probability, Michigan State University, 19 Red Cedar Road, East Lansing, MI 48823, USA.

Department of Bioinformatics and Biostatistics, University of Louisville, 485 East Gray Street, Louisville, KY 40202, USA.

出版信息

J Multivar Anal. 2019 Sep;173:268-290. doi: 10.1016/j.jmva.2019.02.011. Epub 2019 Mar 5.

Abstract

Forward regression, a classical variable screening method, has been widely used for model building when the number of covariates is relatively low. However, forward regression is seldom used in high-dimensional settings because of the cumbersome computation and unknown theoretical properties. Some recent works have shown that forward regression, coupled with an extended Bayesian information criterion (EBIC)-based stopping rule, can consistently identify all relevant predictors in high-dimensional linear regression settings. However, the results are based on the sum of residual squares from linear models and it is unclear whether forward regression can be applied to more general regression settings, such as Cox proportional hazards models. We introduce a forward variable selection procedure for Cox models. It selects important variables sequentially according to the increment of partial likelihood, with an EBIC stopping rule. To our knowledge, this is the first study that investigates the partial likelihood-based forward regression in high-dimensional survival settings and establishes selection consistency results. We show that, if the dimension of the true model is finite, forward regression can discover all relevant predictors within a finite number of steps and their order of entry is determined by the size of the increment in partial likelihood. As partial likelihood is not a regular density-based likelihood, we develop some new theoretical results on partial likelihood and use these results to establish the desired sure screening properties. The practical utility of the proposed method is examined via extensive simulations and analysis of a subset of the Boston Lung Cancer Survival Cohort study, a hospital-based study for identifying biomarkers related to lung cancer patients' survival.

摘要

向前回归是一种经典的变量筛选方法,当协变量数量相对较少时,它已被广泛用于模型构建。然而,由于计算繁琐且理论性质未知,向前回归在高维情形中很少使用。最近的一些研究表明,向前回归与基于扩展贝叶斯信息准则(EBIC)的停止规则相结合,能够在高维线性回归情形中一致地识别所有相关预测变量。然而,这些结果是基于线性模型的残差平方和,目前尚不清楚向前回归是否可以应用于更一般的回归情形,如Cox比例风险模型。我们为Cox模型引入了一种向前变量选择程序。它根据偏似然的增量依次选择重要变量,并采用EBIC停止规则。据我们所知,这是第一项在高维生存情形中研究基于偏似然的向前回归并建立选择一致性结果的研究。我们表明,如果真实模型的维度是有限的,向前回归可以在有限步骤内发现所有相关预测变量,并且它们的进入顺序由偏似然增量的大小决定。由于偏似然不是基于正则密度的似然,我们针对偏似然开发了一些新的理论结果,并利用这些结果建立了所需的确定筛选性质。通过广泛的模拟以及对波士顿肺癌生存队列研究(一项基于医院的旨在识别与肺癌患者生存相关生物标志物的研究)的一个子集进行分析,检验了所提出方法的实际效用。

相似文献

1
Forward regression for Cox models with high-dimensional covariates.具有高维协变量的Cox模型的向前回归
J Multivar Anal. 2019 Sep;173:268-290. doi: 10.1016/j.jmva.2019.02.011. Epub 2019 Mar 5.
2
Quantile forward regression for high-dimensional survival data.高维生存数据的分位数向前回归
Lifetime Data Anal. 2023 Oct;29(4):769-806. doi: 10.1007/s10985-023-09603-w. Epub 2023 Jul 2.
3
Variable screening via quantile partial correlation.通过分位数偏相关进行变量筛选。
J Am Stat Assoc. 2017;112(518):650-663. doi: 10.1080/01621459.2016.1156545. Epub 2017 Mar 30.
6
Feature screening in ultrahigh-dimensional varying-coefficient Cox model.超高维变系数Cox模型中的特征筛选
J Multivar Anal. 2019 May;171:284-297. doi: 10.1016/j.jmva.2018.12.009. Epub 2018 Dec 28.
8
Feature screening in ultrahigh-dimensional additive Cox model.超高维加法Cox模型中的特征筛选
J Stat Comput Simul. 2018;88(6):1117-1133. doi: 10.1080/00949655.2017.1422127. Epub 2018 Jan 8.
10
Variable Selection via Partial Correlation.通过偏相关进行变量选择。
Stat Sin. 2017 Jul;27(3):983-996. doi: 10.5705/ss.202015.0473.

本文引用的文献

4
Conditional screening for ultra-high dimensional covariates with survival outcomes.基于生存结局的超高维协变量条件筛选
Lifetime Data Anal. 2018 Jan;24(1):45-71. doi: 10.1007/s10985-016-9387-7. Epub 2016 Dec 8.
8
Interaction Screening for Ultra-High Dimensional Data.超高维数据的交互筛选
J Am Stat Assoc. 2014;109(507):1285-1301. doi: 10.1080/01621459.2014.881741.
10
ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL.Cox模型中套索回归的Oracle不等式
Ann Stat. 2013 Jun 1;41(3):1142-1165. doi: 10.1214/13-AOS1098.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验