Suppr超能文献

基于CRISPR干扰对细菌中移动遗传元件的调控

CRISPR-interference-based modulation of mobile genetic elements in bacteria.

作者信息

Nyerges Ákos, Bálint Balázs, Cseklye Judit, Nagy István, Pál Csaba, Fehér Tamás

机构信息

Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.

Seqomics Biotechnology Ltd, Mórahalom, Hungary.

出版信息

Synth Biol (Oxf). 2019;4(1):ysz008. doi: 10.1093/synbio/ysz008. Epub 2019 Mar 15.

Abstract

Spontaneous mutagenesis of synthetic genetic constructs by mobile genetic elements frequently results in the rapid loss of engineered functions. Previous efforts to minimize such mutations required the exceedingly time-consuming manipulation of bacterial chromosomes and the complete removal of insertional sequences (ISes). To this aim, we developed a single plasmid-based system (pCRIS) that applies CRISPR-interference to inhibit the transposition of bacterial ISes. pCRIS expresses multiple guide RNAs to direct inactivated Cas9 (dCas9) to simultaneously silence IS, IS, IS and IS at up to 38 chromosomal loci in , . As a result, the transposition rate of all four targeted ISes dropped to negligible levels at both chromosomal and episomal targets. Most notably, pCRIS, while requiring only a single plasmid delivery performed within a single day, provided a reduction of IS-mobility comparable to that seen in genome-scale chromosome engineering projects. The fitness cost of multiple IS-knockdown, detectable in flask-and-shaker systems was readily outweighed by the less frequent inactivation of the transgene, as observed in green fluorescent protein (GFP)-overexpression experiments. In addition, global transcriptomics analysis revealed only minute alterations in the expression of untargeted genes. Finally, the transposition-silencing effect of pCRIS was easily transferable across multiple strains. The plasticity and robustness of our IS-silencing system make it a promising tool to stabilize bacterial genomes for synthetic biology and industrial biotechnology applications.

摘要

移动遗传元件对合成遗传构建体的自发诱变常常导致工程功能的快速丧失。以往为尽量减少此类突变所做的努力需要对细菌染色体进行极其耗时的操作,并完全去除插入序列(IS)。为实现这一目标,我们开发了一种基于单质粒的系统(pCRIS),该系统应用CRISPR干扰来抑制细菌IS的转座。pCRIS表达多个引导RNA,以将失活的Cas9(dCas9)导向同时沉默大肠杆菌染色体上多达38个位点的IS1、IS2、IS3和IS4。结果,所有四个靶向IS的转座率在染色体和附加体靶点处均降至可忽略不计的水平。最值得注意的是,pCRIS虽然只需要在一天内进行一次单质粒递送,但其降低IS移动性的效果与基因组规模染色体工程项目中所见相当。在摇瓶系统中可检测到的多个IS敲除的适应性成本很容易被转基因较少的失活所抵消,如在绿色荧光蛋白(GFP)过表达实验中所观察到的。此外,全局转录组学分析显示未靶向基因的表达只有微小变化。最后,pCRIS的转座沉默效应很容易在多个大肠杆菌菌株间转移。我们的IS沉默系统的可塑性和稳健性使其成为用于合成生物学和工业生物技术应用中稳定细菌基因组的有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c47/7445761/c8cbb79efd89/ysz008f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验