Leday Gwenaël G R, Richardson Sylvia
MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
Biometrics. 2019 Dec;75(4):1288-1298. doi: 10.1111/biom.13064. Epub 2019 May 6.
Despite major methodological developments, Bayesian inference in Gaussian graphical models remains challenging in high dimension due to the tremendous size of the model space. This article proposes a method to infer the marginal and conditional independence structures between variables by multiple testing, which bypasses the exploration of the model space. Specifically, we introduce closed-form Bayes factors under the Gaussian conjugate model to evaluate the null hypotheses of marginal and conditional independence between variables. Their computation for all pairs of variables is shown to be extremely efficient, thereby allowing us to address large problems with thousands of nodes as required by modern applications. Moreover, we derive exact tail probabilities from the null distributions of the Bayes factors. These allow the use of any multiplicity correction procedure to control error rates for incorrect edge inclusion. We demonstrate the proposed approach on various simulated examples as well as on a large gene expression data set from The Cancer Genome Atlas.
尽管在方法学上有了重大进展,但由于模型空间规模巨大,高斯图形模型中的贝叶斯推理在高维情况下仍然具有挑战性。本文提出了一种通过多重检验来推断变量之间的边际和条件独立结构的方法,该方法绕过了对模型空间的探索。具体而言,我们在高斯共轭模型下引入了封闭形式的贝叶斯因子,以评估变量之间边际和条件独立的原假设。结果表明,对所有变量对进行计算的效率极高,从而使我们能够处理现代应用中所需的具有数千个节点的大型问题。此外,我们从贝叶斯因子的原分布中推导出精确的尾部概率。这允许使用任何多重性校正程序来控制错误包含边的错误率。我们在各种模拟示例以及来自癌症基因组图谱的大型基因表达数据集上展示了所提出的方法。