Suppr超能文献

贝叶斯估计在高斯图模型中的应用:结构学习、可预测性以及网络比较。

Bayesian Estimation for Gaussian Graphical Models: Structure Learning, Predictability, and Network Comparisons.

机构信息

Department of Psychology, University of California, Davis, Davis, California, USA.

出版信息

Multivariate Behav Res. 2021 Mar-Apr;56(2):336-352. doi: 10.1080/00273171.2021.1894412. Epub 2021 Mar 19.

Abstract

Gaussian graphical models (GGM; "networks") allow for estimating conditional dependence structures that are encoded by partial correlations. This is accomplished by identifying non-zero relations in the inverse of the covariance matrix. In psychology the default estimation method uses -regularization, where the accompanying inferences are restricted to frequentist objectives. Bayesian methods remain relatively uncommon in practice and methodological literatures. To date, they have not yet been used for estimation and inference in the psychological network literature. In this work, I introduce Bayesian methodology that is specifically designed for the most common psychological applications. The graphical structure is determined with posterior probabilities that can be used to assess conditional dependent and independent relations. Additional methods are provided for extending inference to specific aspects within- and between-networks, including partial correlation differences and Bayesian methodology to quantify network predictability. I first demonstrate that the decision rule based on posterior probabilities can be calibrated to the desired level of specificity. The proposed techniques are then demonstrated in several illustrative examples. The methods have been implemented in the R package BGGM.

摘要

高斯图形模型(GGM;“网络”)允许估计由偏相关编码的条件依赖结构。这是通过在协方差矩阵的逆中识别非零关系来实现的。在心理学中,默认的估计方法使用 -正则化,其中伴随的推断仅限于频率主义目标。贝叶斯方法在实践和方法文献中仍然相对少见。迄今为止,它们尚未用于心理网络文献中的估计和推断。在这项工作中,我引入了专门为最常见的心理学应用设计的贝叶斯方法。图形结构是通过后验概率确定的,可用于评估条件相关和独立关系。还提供了其他方法来将推断扩展到网络内和网络间的特定方面,包括偏相关差异和贝叶斯方法来量化网络可预测性。我首先证明了基于后验概率的决策规则可以校准到所需的特异性水平。然后在几个说明性示例中演示了所提出的技术。该方法已在 R 包 BGGM 中实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验