文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

应用于结直肠息肉实时勾画的深度学习模型。

Deep learning model applied to real-time delineation of colorectal polyps.

作者信息

Gelu-Simeon Moana, Mamou Adel, Saint-Georges Georgette, Alexis Marceline, Sautereau Marie, Mamou Yassine, Simeon Jimmy

机构信息

Service d'Hépato-Gastroentérologie, CHU de la Guadeloupe, Pointe- à-Pitre, F-97100, France.

Univ Antilles, Univ. Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Pointe-à-Pitre, F-97100, France.

出版信息

BMC Med Inform Decis Mak. 2025 Jun 4;25(1):206. doi: 10.1186/s12911-025-03047-y.


DOI:10.1186/s12911-025-03047-y
PMID:40468304
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12135501/
Abstract

BACKGROUND: Deep learning models have shown considerable potential to improve diagnostic accuracy across medical fields. Although YOLACT has demonstrated real-time detection and segmentation in non-medical datasets, its application in medical settings remains underexplored. This study evaluated the performance of a YOLACT-derived Real-time Polyp Delineation Model (RTPoDeMo) for real-time use on prospectively recorded colonoscopy videos. METHODS: Twelve combinations of architectures, including Mask-RCNN, YOLACT, and YOLACT++, paired with backbones such as ResNet50, ResNet101, and DarkNet53, were tested on 2,188 colonoscopy images with three image resolution sizes. Dataset preparation involved pre-processing and segmentation annotation, with optimized image augmentation. RESULTS: RTPoDeMo, using YOLACT-ResNet50, achieved 72.3 mAP and 32.8 FPS for real-time instance segmentation based on COCO annotations. The model performed with a per-image accuracy of 99.59% (95% CI: [99.45 - 99.71%]), sensitivity of 90.63% (95% CI: [78.95 - 93.64%]), specificity of 99.95% (95% CI: [99.93 - 99.97%]) and a F1-score of 0.94 (95% CI: [0.87-0.98]). In validation, out of 36 polyps detected by experts, RTPoDeMo missed only one polyp, compared to six missed by senior endoscopists. The model demonstrated good agreement with experts, reflected by a Cohen's Kappa coefficient of 0.72 (95% CI: [0.54-1.00], p < 0.0001). CONCLUSIONS: Our model provides new perspectives in the adaptation of YOLACT to the real-time delineation of colorectal polyps. In the future, it could improve the characterization of polyps to be resected during colonoscopy.

摘要

背景:深度学习模型在提高各医学领域的诊断准确性方面显示出了巨大潜力。尽管YOLACT已在非医学数据集中证明了实时检测和分割能力,但其在医学环境中的应用仍有待深入探索。本研究评估了一种源自YOLACT的实时息肉描绘模型(RTPoDeMo)在对前瞻性记录的结肠镜检查视频进行实时应用时的性能。 方法:测试了包括Mask-RCNN、YOLACT和YOLACT++在内的12种架构组合,并与ResNet50、ResNet101和DarkNet53等骨干网络配对,在2188张具有三种图像分辨率大小的结肠镜检查图像上进行测试。数据集准备包括预处理和分割注释,并进行了优化的图像增强。 结果:基于COCO注释,使用YOLACT-ResNet50的RTPoDeMo在实时实例分割方面实现了72.3 mAP和32.8 FPS。该模型的单图像准确率为99.59%(95%置信区间:[99.45 - 99.71%]),灵敏度为90.63%(95%置信区间:[78.95 - 93.64%]),特异性为99.95%(95%置信区间:[99.93 - 99.97%]),F1分数为0.94(95%置信区间:[0.87 - 0.98])。在验证中,在专家检测出的36个息肉中,RTPoDeMo仅漏检了1个息肉,而高级内镜医师漏检了6个。该模型与专家表现出良好的一致性,Cohen's Kappa系数为0.72(95%置信区间:[0.54 - 1.00],p < 0.0001)。 结论:我们的模型为将YOLACT应用于大肠息肉的实时描绘提供了新的视角。未来,它可能会改善结肠镜检查期间待切除息肉的特征描述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caf6/12135501/f300d298779e/12911_2025_3047_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caf6/12135501/fe22102ca3b3/12911_2025_3047_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caf6/12135501/b77ff304b37d/12911_2025_3047_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caf6/12135501/8bab8266ebda/12911_2025_3047_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caf6/12135501/237304b7b0b2/12911_2025_3047_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caf6/12135501/736938c4ad8f/12911_2025_3047_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caf6/12135501/f300d298779e/12911_2025_3047_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caf6/12135501/fe22102ca3b3/12911_2025_3047_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caf6/12135501/b77ff304b37d/12911_2025_3047_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caf6/12135501/8bab8266ebda/12911_2025_3047_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caf6/12135501/237304b7b0b2/12911_2025_3047_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caf6/12135501/736938c4ad8f/12911_2025_3047_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caf6/12135501/f300d298779e/12911_2025_3047_Fig6_HTML.jpg

相似文献

[1]
Deep learning model applied to real-time delineation of colorectal polyps.

BMC Med Inform Decis Mak. 2025-6-4

[2]
Computer-aided automated diminutive colonic polyp detection in colonoscopy by using deep machine learning system; first indigenous algorithm developed in India.

Indian J Gastroenterol. 2023-4

[3]
Establishment and validation of a computer-assisted colonic polyp localization system based on deep learning.

World J Gastroenterol. 2021-8-21

[4]
Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy.

Nat Biomed Eng. 2018-10-10

[5]
Real-time detection of colon polyps during colonoscopy using deep learning: systematic validation with four independent datasets.

Sci Rep. 2020-5-20

[6]
Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy.

Gastroenterology. 2018-6-18

[7]
An improved deep learning approach and its applications on colonic polyp images detection.

BMC Med Imaging. 2020-7-22

[8]
Application of Deep Learning for Early Screening of Colorectal Precancerous Lesions under White Light Endoscopy.

Comput Math Methods Med. 2020

[9]
Improved Accuracy in Optical Diagnosis of Colorectal Polyps Using Convolutional Neural Networks with Visual Explanations.

Gastroenterology. 2020-6

[10]
Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges.

Med Image Anal. 2025-1

本文引用的文献

[1]
Polypoid Lesion Segmentation Using YOLO-V8 Network in Wireless Video Capsule Endoscopy Images.

Diagnostics (Basel). 2024-2-22

[2]
A lightweight network based on dual-stream feature fusion and dual-domain attention for white blood cells segmentation.

Front Oncol. 2023-9-4

[3]
Artificial Intelligence-Assisted Colonoscopy for Colorectal Cancer Screening: A Multicenter Randomized Controlled Trial.

Clin Gastroenterol Hepatol. 2023-2

[4]
A novel AI device for real-time optical characterization of colorectal polyps.

NPJ Digit Med. 2022-6-30

[5]
Computer-Aided Detection Improves Adenomas per Colonoscopy for Screening and Surveillance Colonoscopy: A Randomized Trial.

Gastroenterology. 2022-9

[6]
Clinical evaluation of a real-time artificial intelligence-based polyp detection system: a US multi-center pilot study.

Sci Rep. 2022-4-21

[7]
Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study.

Lancet Digit Health. 2022-6

[8]
Impact of Artificial Intelligence on Miss Rate of Colorectal Neoplasia.

Gastroenterology. 2022-7

[9]
Assessing YOLACT++ for real time and robust instance segmentation of medical instruments in endoscopic procedures.

Annu Int Conf IEEE Eng Med Biol Soc. 2021-11

[10]
Evaluation of novel LCI CAD EYE system for real time detection of colon polyps.

PLoS One. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索