College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing, China.
The State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, Shaanxi, China.
Neuroinformatics. 2020 Jan;18(1):43-57. doi: 10.1007/s12021-019-09423-0.
Fractional amplitude of low-frequency fluctuation (fALFF) has been widely used for resting-state functional magnetic resonance imaging (rs-fMRI) based schizophrenia (SZ) diagnosis. However, previous studies usually measure the fALFF within low-frequency fluctuation (from 0.01 to 0.08Hz), which cannot fully cover the complex neural activity pattern in the resting-state brain. In addition, existing studies usually ignore the fact that each specific frequency band can delineate the unique spontaneous fluctuations of neural activities in the brain. Accordingly, in this paper, we propose a novel hierarchical structured sparse learning method to sufficiently utilize the specificity and complementary structure information across four different frequency bands (from 0.01Hz to 0.25Hz) for SZ diagnosis. The proposed method can help preserve the partial group structures among multiple frequency bands and the specific characters in each frequency band. We further develop an efficient optimization algorithm to solve the proposed objective function. We validate the efficacy of our proposed method on a real SZ dataset. Also, to demonstrate the generality of the method, we apply our proposed method on a subset of Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results on both datasets demonstrate that our proposed method achieves promising performance in brain disease classification, compared with several state-of-the-art methods.
低频振幅分数(fALFF)已广泛应用于基于静息态功能磁共振成像(rs-fMRI)的精神分裂症(SZ)诊断。然而,以往的研究通常在低频波动(0.01 到 0.08Hz)范围内测量 fALFF,这不能充分覆盖静息态大脑中的复杂神经活动模式。此外,现有的研究通常忽略了这样一个事实,即每个特定的频带可以描绘大脑中神经活动的独特自发波动。因此,在本文中,我们提出了一种新的分层结构稀疏学习方法,以充分利用四个不同频带(0.01Hz 到 0.25Hz)的特异性和互补结构信息,用于 SZ 诊断。所提出的方法可以帮助保留多个频带之间的部分组结构以及每个频带的特定特征。我们进一步开发了一种有效的优化算法来解决所提出的目标函数。我们在一个真实的 SZ 数据集上验证了我们所提出的方法的有效性。此外,为了证明该方法的通用性,我们将我们提出的方法应用于阿尔茨海默病神经影像学倡议(ADNI)数据库的子集。在两个数据集上的实验结果表明,与几种最先进的方法相比,我们提出的方法在脑疾病分类方面具有有前景的性能。