Suppr超能文献

用于阿尔茨海默病纵向数据分析的时间约束组稀疏学习

Temporally Constrained Group Sparse Learning for Longitudinal Data Analysis in Alzheimer's Disease.

作者信息

Jie Biao, Liu Mingxia, Liu Jun, Zhang Daoqiang, Shen Dinggang

出版信息

IEEE Trans Biomed Eng. 2017 Jan;64(1):238-249. doi: 10.1109/TBME.2016.2553663. Epub 2016 Apr 13.

Abstract

Sparse learning has been widely investigated for analysis of brain images to assist the diagnosis of Alzheimer's disease and its prodromal stage, i.e., mild cognitive impairment. However, most existing sparse learning-based studies only adopt cross-sectional analysis methods, where the sparse model is learned using data from a single time-point. Actually, multiple time-points of data are often available in brain imaging applications, which can be used in some longitudinal analysis methods to better uncover the disease progression patterns. Accordingly, in this paper, we propose a novel temporallyconstrained group sparse learning method aiming for longitudinal analysis with multiple time-points of data. Specifically, we learn a sparse linear regression model by using the imaging data from multiple time-points, where a group regularization term is first employed to group the weights for the same brain region across different time-points together. Furthermore, to reflect the smooth changes between data derived from adjacent time-points, we incorporate two smoothness regularization terms into the objective function, i.e., one fused smoothness term thatrequires that the differences between two successive weight vectors from adjacent time-points should be small, and another output smoothness term thatrequires the differences between outputs of two successive models from adjacent time-points should also be small. We develop an efficient optimization algorithm to solve the proposed objective function. Experimental results on ADNI database demonstrate that, compared with conventional sparse learning-based methods, our proposed method can achieve improved regression performance and also help in discovering disease-related biomarkers.

摘要

稀疏学习已被广泛用于脑图像分析,以辅助阿尔茨海默病及其前驱阶段(即轻度认知障碍)的诊断。然而,大多数现有的基于稀疏学习的研究仅采用横断面分析方法,即使用来自单个时间点的数据学习稀疏模型。实际上,在脑成像应用中通常可以获得多个时间点的数据,这些数据可用于一些纵向分析方法,以更好地揭示疾病进展模式。因此,在本文中,我们提出了一种新颖的时间约束组稀疏学习方法,旨在对多个时间点的数据进行纵向分析。具体来说,我们通过使用来自多个时间点的成像数据来学习一个稀疏线性回归模型,其中首先采用组正则化项将不同时间点上同一脑区的权重分组在一起。此外,为了反映相邻时间点数据之间的平滑变化,我们在目标函数中纳入了两个平滑正则化项,即一个融合平滑项,要求相邻时间点的两个连续权重向量之间的差异应较小,另一个输出平滑项,要求相邻时间点的两个连续模型的输出之间的差异也应较小。我们开发了一种高效的优化算法来求解所提出的目标函数。在ADNI数据库上的实验结果表明,与传统的基于稀疏学习的方法相比,我们提出的方法可以实现更好的回归性能,并且有助于发现与疾病相关的生物标志物。

相似文献

1
Temporally Constrained Group Sparse Learning for Longitudinal Data Analysis in Alzheimer's Disease.
IEEE Trans Biomed Eng. 2017 Jan;64(1):238-249. doi: 10.1109/TBME.2016.2553663. Epub 2016 Apr 13.
2
Temporally-constrained group sparse learning for longitudinal data analysis.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):264-71. doi: 10.1007/978-3-642-33454-2_33.
3
A Novel Grading Biomarker for the Prediction of Conversion From Mild Cognitive Impairment to Alzheimer's Disease.
IEEE Trans Biomed Eng. 2017 Jan;64(1):155-165. doi: 10.1109/TBME.2016.2549363. Epub 2016 Apr 1.
4
Relationship Induced Multi-Template Learning for Diagnosis of Alzheimer's Disease and Mild Cognitive Impairment.
IEEE Trans Med Imaging. 2016 Jun;35(6):1463-74. doi: 10.1109/TMI.2016.2515021. Epub 2016 Jan 5.
5
Graph-guided joint prediction of class label and clinical scores for the Alzheimer's disease.
Brain Struct Funct. 2016 Sep;221(7):3787-801. doi: 10.1007/s00429-015-1132-6. Epub 2015 Oct 17.
6
Group Guided Fused Laplacian Sparse Group Lasso for Modeling Alzheimer's Disease Progression.
Comput Math Methods Med. 2020 Feb 20;2020:4036560. doi: 10.1155/2020/4036560. eCollection 2020.
7
Gaussian Discriminant Analysis for Optimal Delineation of Mild Cognitive Impairment in Alzheimer's Disease.
Int J Neural Syst. 2018 Oct;28(8):1850017. doi: 10.1142/S012906571850017X. Epub 2018 Apr 12.
8
Fused Sparse Network Learning for Longitudinal Analysis of Mild Cognitive Impairment.
IEEE Trans Cybern. 2021 Jan;51(1):233-246. doi: 10.1109/TCYB.2019.2940526. Epub 2020 Dec 22.
10
Generalized fused group lasso regularized multi-task feature learning for predicting cognitive outcomes in Alzheimers disease.
Comput Methods Programs Biomed. 2018 Aug;162:19-45. doi: 10.1016/j.cmpb.2018.04.028. Epub 2018 May 3.

引用本文的文献

1
Employing Informatics Strategies in Alzheimer's Disease Research: A Review from Genetics, Multiomics, and Biomarkers to Clinical Outcomes.
Annu Rev Biomed Data Sci. 2024 Aug;7(1):391-418. doi: 10.1146/annurev-biodatasci-102423-121021. Epub 2024 Jul 24.
2
Applications of generative adversarial networks in neuroimaging and clinical neuroscience.
Neuroimage. 2023 Apr 1;269:119898. doi: 10.1016/j.neuroimage.2023.119898. Epub 2023 Jan 24.
4
High-Order Laplacian Regularized Low-Rank Representation for Multimodal Dementia Diagnosis.
Front Neurosci. 2021 Mar 12;15:634124. doi: 10.3389/fnins.2021.634124. eCollection 2021.
5
A distributed multitask multimodal approach for the prediction of Alzheimer's disease in a longitudinal study.
Neuroimage. 2020 Feb 1;206:116317. doi: 10.1016/j.neuroimage.2019.116317. Epub 2019 Nov 1.
6
Identifying Autism Spectrum Disorder With Multi-Site fMRI via Low-Rank Domain Adaptation.
IEEE Trans Med Imaging. 2020 Mar;39(3):644-655. doi: 10.1109/TMI.2019.2933160. Epub 2019 Aug 5.
7
Latent Representation Learning for Alzheimer's Disease Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data.
IEEE Trans Med Imaging. 2019 Oct;38(10):2411-2422. doi: 10.1109/TMI.2019.2913158. Epub 2019 Apr 25.
8
Hierarchical Structured Sparse Learning for Schizophrenia Identification.
Neuroinformatics. 2020 Jan;18(1):43-57. doi: 10.1007/s12021-019-09423-0.
9
Multi-task exclusive relationship learning for alzheimer's disease progression prediction with longitudinal data.
Med Image Anal. 2019 Apr;53:111-122. doi: 10.1016/j.media.2019.01.007. Epub 2019 Jan 30.
10
Machine learning studies on major brain diseases: 5-year trends of 2014-2018.
Jpn J Radiol. 2019 Jan;37(1):34-72. doi: 10.1007/s11604-018-0794-4. Epub 2018 Nov 29.

本文引用的文献

1
Identifying Neuroimaging and Proteomic Biomarkers for MCI and AD via the Elastic Net.
Multimodal Brain Image Anal (2011). 2011 Sep;7012:27-34. doi: 10.1007/978-3-642-24446-9_4.
2
View-centralized multi-atlas classification for Alzheimer's disease diagnosis.
Hum Brain Mapp. 2015 May;36(5):1847-65. doi: 10.1002/hbm.22741. Epub 2015 Jan 27.
3
Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm.
Neurobiol Aging. 2015 Jan;36 Suppl 1:S185-93. doi: 10.1016/j.neurobiolaging.2014.07.045. Epub 2014 Aug 29.
4
Manifold regularized multitask feature learning for multimodality disease classification.
Hum Brain Mapp. 2015 Feb;36(2):489-507. doi: 10.1002/hbm.22642. Epub 2014 Oct 3.
6
Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer's disease and semantic dementia.
Neuroimage Clin. 2013 Aug 14;3:155-62. doi: 10.1016/j.nicl.2013.08.007. eCollection 2013.
7
Locally linear embedding (LLE) for MRI based Alzheimer's disease classification.
Neuroimage. 2013 Dec;83:148-57. doi: 10.1016/j.neuroimage.2013.06.033. Epub 2013 Jun 21.
8
Modeling disease progression via multi-task learning.
Neuroimage. 2013 Sep;78:233-48. doi: 10.1016/j.neuroimage.2013.03.073. Epub 2013 Apr 12.
9
Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment.
Psychiatry Res. 2013 May 30;212(2):89-98. doi: 10.1016/j.pscychresns.2012.11.005. Epub 2013 Mar 29.
10
LABEL: pediatric brain extraction using learning-based meta-algorithm.
Neuroimage. 2012 Sep;62(3):1975-86. doi: 10.1016/j.neuroimage.2012.05.042. Epub 2012 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验