Suppr超能文献

利用人工智能识别脑瘫青少年自闭症谱系障碍的相关因素。

Using Artificial Intelligence to Identify Factors Associated with Autism Spectrum Disorder in Adolescents with Cerebral Palsy.

作者信息

Bertoncelli Carlo M, Altamura Paola, Vieira Edgar Ramos, Bertoncelli Domenico, Solla Federico

机构信息

Department of Pediatric Orthopaedic Surgery, Lenval University Pediatric Hospital of Nice, Nice, France.

EEAP H. Germain, Departement of Physical Therapy, Fondation Lenval-Children Hospital, Nice, France.

出版信息

Neuropediatrics. 2019 Jun;50(3):178-187. doi: 10.1055/s-0039-1685525. Epub 2019 Apr 24.

Abstract

Autism spectrum disorder (ASD) is common in adolescents with cerebral palsy (CP) and there is a lack of studies applying artificial intelligence to investigate this field and this population in particular. The aim of this study is to develop and test a predictive learning model to identify factors associated with ASD in adolescents with CP. This was a multicenter controlled cohort study of 102 adolescents with CP (61 males, 41 females; mean age ± SD [standard deviation] = 16.6 ± 1.2 years; range: 12-18 years). Data on etiology, diagnosis, spasticity, epilepsy, clinical history, communication abilities, behaviors, intellectual disability, motor skills, and eating and drinking abilities were collected between 2005 and 2015. Statistical analysis included Fisher's exact test and multiple logistic regressions to identify factors associated with ASD. A predictive learning model was implemented to identify factors associated with ASD. The guidelines of the "transparent reporting of a multivariable prediction model for individual prognosis or diagnosis" (TRIPOD) statement were followed. Type of spasticity (hemiplegia > diplegia > tri/quadriplegia; OR [odds ratio] = 1.76, SE [standard error] = 0.2785,  = 0.04), communication disorders (OR = 7.442, SE = 0.59,  < 0.001), intellectual disability (OR = 2.27, SE = 0.43,  = 0.05), feeding abilities (OR = 0.35, SE = 0.35,  = 0.002), and motor function (OR = 0.59, SE = 0.22,  = 0.01) were significantly associated with ASD. The best average prediction model score for accuracy, specificity, and sensitivity was 75%. Motor skills, feeding abilities, type of spasticity, intellectual disability, and communication disorders were associated with ASD. The prediction model was able to adequately identify adolescents at risk of ASD.

摘要

自闭症谱系障碍(ASD)在脑瘫(CP)青少年中很常见,目前缺乏应用人工智能来研究该领域尤其是这一人群的相关研究。本研究的目的是开发并测试一种预测性学习模型,以识别与CP青少年ASD相关的因素。这是一项针对102名CP青少年(61名男性,41名女性;平均年龄±标准差[SD]=16.6±1.2岁;范围:12 - 18岁)的多中心对照队列研究。在2005年至2015年期间收集了病因、诊断、痉挛、癫痫、临床病史、沟通能力、行为、智力残疾、运动技能以及饮食能力等方面的数据。统计分析包括Fisher精确检验和多重逻辑回归,以识别与ASD相关的因素。实施了一种预测性学习模型来识别与ASD相关的因素。遵循了“个体预后或诊断多变量预测模型的透明报告”(TRIPOD)声明的指南。痉挛类型(偏瘫>双瘫>三/四肢瘫;优势比[OR]=1.76,标准误差[SE]=0.2785,P=0.04)、沟通障碍(OR=7.442,SE=0.59,P<0.001)、智力残疾(OR=2.27,SE=0.43,P=0.05)、进食能力(OR=0.35,SE=0.35,P=0.002)和运动功能(OR=0.59,SE=0.22,P=0.01)与ASD显著相关。准确性、特异性和敏感性的最佳平均预测模型得分为75%。运动技能、进食能力、痉挛类型、智力残疾和沟通障碍与ASD相关。该预测模型能够充分识别有ASD风险的青少年。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验