Suppr超能文献

使用统计数据挖掘和机器学习预测成年人的骨关节炎

Predicting osteoarthritis in adults using statistical data mining and machine learning.

作者信息

Bertoncelli Carlo M, Altamura Paola, Bagui Sikha, Bagui Subhash, Vieira Edgar Ramos, Costantini Stefania, Monticone Marco, Solla Federico, Bertoncelli Domenico

机构信息

Department of Computer Science, Hal Marcus College of Science and Engineering, University of West Florida, Pensacola, FL 32514, USA.

Department of Medicinal Chemistry and Pharmaceutical Technology, University of Chieti, Chieti, Italy.

出版信息

Ther Adv Musculoskelet Dis. 2022 Jul 16;14:1759720X221104935. doi: 10.1177/1759720X221104935. eCollection 2022.

Abstract

BACKGROUND

Osteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the risk factors for OA in younger adults need to be further evaluated.

OBJECTIVES

To develop a prediction model for identifying risk factors of OA in subjects aged 20-50 years and compare the performance of different machine learning models.

METHODS

We included data from 52,512 participants of the National Health and Nutrition Examination Survey; of those, we analyzed only subjects aged 20-50 years ( = 19,133), with or without OA. The supervised machine learning model 'Deep PredictMed' based on logistic regression, deep neural network (DNN), and support vector machine was used for identifying demographic and personal characteristics that are associated with OA. Finally, we compared the performance of the different models.

RESULTS

Being a female ( < 0.001), older age ( < 0.001), a smoker ( < 0.001), higher body mass index ( < 0.001), high blood pressure ( < 0.001), race/ethnicity (lowest risk among Mexican Americans,  = 0.01), and physical and mental limitations ( < 0.001) were associated with having OA. Best predictive performance yielded a 75% area under the receiver operating characteristic curve.

CONCLUSION

Sex (female), age (older), smoking (yes), body mass index (higher), blood pressure (high), race/ethnicity, and physical and mental limitations are risk factors for having OA in adults aged 20-50 years. The best predictive performance was achieved using DNN algorithms.

摘要

背景

骨关节炎(OA)传统上被认为是老年人(≥65岁)的疾病,但也可能出现在年轻人中。然而,年轻人患OA的风险因素需要进一步评估。

目的

建立一个预测模型,以识别20至50岁人群中OA的风险因素,并比较不同机器学习模型的性能。

方法

我们纳入了来自美国国家健康与营养检查调查的52512名参与者的数据;其中,我们仅分析了20至50岁的受试者(n = 19133),无论是否患有OA。基于逻辑回归、深度神经网络(DNN)和支持向量机的监督机器学习模型“深度预测医学”用于识别与OA相关的人口统计学和个人特征。最后,我们比较了不同模型的性能。

结果

女性(P < 0.001)、年龄较大(P < 0.001)、吸烟者(P < 0.001)、较高的体重指数(P < 0.001)、高血压(P < 0.001)、种族/族裔(墨西哥裔美国人风险最低,P = 0.01)以及身体和精神限制(P < 0.001)与患OA有关。最佳预测性能在受试者工作特征曲线下面积为75%。

结论

性别(女性)、年龄(较大)、吸烟(是)、体重指数(较高)、血压(高)、种族/族裔以及身体和精神限制是20至50岁成年人患OA的风险因素。使用DNN算法可实现最佳预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/9290106/e8b304e5e0d7/10.1177_1759720X221104935-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验