Electrical and Computer Engineering Department, Cornell University, Ithaca, NY, USA.
Electrical and Computer Engineering Department, Marquette University, Milwaukee, WI, USA.
Sci Rep. 2019 Apr 25;9(1):6546. doi: 10.1038/s41598-019-42999-w.
Photothermal hyperthermia is proven to be an effective diagnostic tool for cancer therapy. The efficacy of this method directly relies on understanding the localization of the photothermal effect in the targeted region. Realizing the safe and effective concentration of nano-particles and the irradiation intensity and time requires spatiotemporal temperature monitoring during and after laser irradiation. Due to uniformities of the nanoparticle distribution and the complexities of the microenvironment, a direct temperature measurement in micro-scale is crucial for achieving precise thermal dose control. In this study, a 50 nm thin film nickel resistive temperature sensor was fabricated on a 300 nm SiN membrane to directly measure the local temperature variations of a hydrogel-GNR mixture under laser exposure with 2 mK temperature resolution. The chip-scale approach developed here is an effective tool to investigate localization of photothermal heating for hyperthermia applications for in-vitro and ex-vivo models. Considering the connection between thermal properties, porosity and the matrix stiffness in hydrogels, we present our results using the interplay between matrix stiffness of the hydrogel and its thermal properties: the stiffer the hydrogel, the higher the thermal conductivity resulting in lower photothermal heating. We measured 8.1, 7.4, and 5.6 °C temperature changes (from the room temperature, 20 °C) in hydrogel models with stiffness levels corresponding to adipose (4 kPa), muscle (13 kPa) and osteoid (30 kPa) tissues respectively by exposing them to 2 W/cm laser (808 nm) intensity for 150 seconds.
光热疗法已被证明是癌症治疗的一种有效诊断工具。该方法的疗效直接依赖于对靶向区域光热效应定位的理解。要实现纳米颗粒的安全有效浓度以及辐照强度和时间,需要在激光辐照期间和之后进行时空温度监测。由于纳米颗粒分布的均匀性和微环境的复杂性,在微尺度上进行直接温度测量对于实现精确的热剂量控制至关重要。在这项研究中,在 300nm SiN 膜上制造了 50nm 厚的镍电阻温度传感器,以在激光暴露下直接测量水凝胶-GNR 混合物的局部温度变化,其温度分辨率为 2mK。这里开发的芯片级方法是一种有效的工具,可用于研究用于体外和离体模型的热疗应用中的光热加热定位。考虑到水凝胶中的热性能、孔隙率和基质刚度之间的联系,我们使用水凝胶基质的刚度与其热性能之间的相互作用来呈现我们的结果:水凝胶越硬,导热系数越高,导致光热加热越低。通过将它们暴露于 2W/cm 的激光(808nm)强度 150 秒,我们分别测量了对应于脂肪(4kPa)、肌肉(13kPa)和类骨质(30kPa)组织的水凝胶模型中的 8.1、7.4 和 5.6°C 的温度变化(相对于室温 20°C)。