Suppr超能文献

基于磁水凝胶的杂交支架在生物医学中的应用

Hybrid Stents Based on Magnetic Hydrogels for Biomedical Applications.

机构信息

School of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.

Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH, 57001 Thessaloniki, Greece.

出版信息

ACS Appl Bio Mater. 2022 Jun 20;5(6):2598-2607. doi: 10.1021/acsabm.2c00088. Epub 2022 May 17.

Abstract

Tremendous attention has been given to hydrogels due to their mechanical and physical properties. Hydrogels are promising biomaterials due to their high biocompatibility. Magnetic hydrogels, which are based on hydrogel incorporated magnetic nanoparticles, have been proposed in biomedical applications. The advantages of magnetic hydrogels are that they can easily respond to externally applied magnetic fields and prevent the leakage of magnetic nanoparticles in the surrounding area. Herein, a prototype hybrid stent of magnetic hydrogel was fabricated, characterized, and evaluated for magnetic hyperthermia treatment. First, magnetic hydrogel was produced by a solution of alginate with magnetic nanoparticles in a bath of calcium chloride (5-15 mg mL) in order to achieve the external gelation and optimize the heating rate. The increased concentration (1-8 mg mL) of magnetic nanoparticles inside the hydrogel resulted in almost zero leakage of iron oxide nanoparticles after 15 days, guaranteeing that they can be used safely in biomedical applications. Thus, magnetic hybrid stents, which are based on the magnetic hydrogels, were developed in a simple way and were evaluated both in an agarose phantom model and in an ex vivo tissue sample at 30 mT and 765 kHz magnetic hyperthermia conditions to examine the heating efficiency. In both cases, hyperthermia results indicate excellent heat generation from the hybrid stent and facile temperature control via tuning magnetic nanoparticle concentration (2-8 mg mL). This study can be a promising method that promotes spatially thermal distribution in cancer treatment or restenosis treatment of hollow organs.

摘要

由于其机械和物理特性,水凝胶引起了极大的关注。水凝胶具有高生物相容性,是很有前途的生物材料。基于水凝胶中掺入磁性纳米粒子的磁性水凝胶已被提议用于生物医学应用。磁性水凝胶的优点是它们可以很容易地对外界施加的磁场做出响应,并防止周围区域的磁性纳米粒子泄漏。在此,制备、表征并评估了一种磁性水凝胶的原型混合支架,用于磁热疗。首先,通过将含有磁性纳米粒子的海藻酸钠溶液在氯化钙浴中(5-15mg/mL)进行外部凝胶化来制备磁性水凝胶,以实现优化的升温速率。增加水凝胶内部磁性纳米粒子的浓度(1-8mg/mL),在 15 天后几乎没有氧化铁纳米粒子的泄漏,保证了它们可以安全地用于生物医学应用。因此,以磁性水凝胶为基础的磁性混合支架以简单的方式开发,并在琼脂糖幻影模型和 30mT 和 765kHz 磁热疗条件下的离体组织样本中进行评估,以检查加热效率。在这两种情况下,热疗结果都表明混合支架具有出色的发热能力,并且通过调节磁性纳米粒子浓度(2-8mg/mL)可以轻松控制温度。这项研究是一种很有前途的方法,可以促进癌症治疗或中空器官再狭窄治疗中的空间热分布。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验