Department of Physiology & Pharmacology, State University of New York Downstate Medical Center, Brooklyn, United States.
Department of Physiology, Northwestern University, Chicago, United States.
Elife. 2019 Apr 26;8:e44494. doi: 10.7554/eLife.44494.
Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, for example connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables users to generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis - connectivity matrices, voltage traces, spike raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate brain regions and phenomena.
神经回路的生物物理建模有助于整合和解释多尺度上快速增长和不同的实验数据集。NetPyNE 工具(www.netpyne.org)为在 NEURON 中开发数据驱动的多尺度网络模型提供了程序和图形界面。NetPyNE 清楚地将模型参数与实现代码分开。用户通过标准化的声明性语言(例如连接规则)提供高级别的规范,以创建数百万个细胞间的连接。然后,NetPyNE 允许用户生成 NEURON 网络,高效地并行运行模拟,通过自动化批处理运行优化和探索网络参数,并使用内置函数进行可视化和分析 - 连接矩阵、电压迹线、尖峰 raster 图、局部场电位和信息理论度量。NetPyNE 还通过导出和导入标准化格式(NeuroML 和 SONATA)来促进模型共享。NetPyNE 已经被用于教授计算神经科学的学生和建模者,以研究大脑区域和现象。