Suppr超能文献

基于AlexNet迁移学习模型的酒精中毒识别

Alcoholism Identification Based on an AlexNet Transfer Learning Model.

作者信息

Wang Shui-Hua, Xie Shipeng, Chen Xianqing, Guttery David S, Tang Chaosheng, Sun Junding, Zhang Yu-Dong

机构信息

School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China.

School of Architecture Building and Civil Engineering, Loughborough University, Loughborough, United Kingdom.

出版信息

Front Psychiatry. 2019 Apr 11;10:205. doi: 10.3389/fpsyt.2019.00205. eCollection 2019.

Abstract

This paper proposes a novel alcoholism identification approach that can assist radiologists in patient diagnosis. AlexNet was used as the basic transfer learning model. The global learning rate was small, at 10, and the iteration epoch number was at 10. The learning rate factor of replaced layers was 10 times larger than that of the transferred layers. We tested five different replacement configurations of transfer learning. The experiment shows that the best performance was achieved by replacing the final fully connected layer. Our method yielded a sensitivity of 97.44%± 1.15%, a specificity of 97.41 ± 1.51%, a precision of 97.34 ± 1.49%, an accuracy of 97.42 ± 0.95%, and an F1 score of 97.37 ± 0.97% on the test set. This method can assist radiologists in their routine alcoholism screening of brain magnetic resonance images.

摘要

本文提出了一种新颖的酗酒识别方法,可协助放射科医生进行患者诊断。使用AlexNet作为基本的迁移学习模型。全局学习率较小,为10,迭代轮数为10。替换层的学习率因子比迁移层的大10倍。我们测试了迁移学习的五种不同替换配置。实验表明,通过替换最终的全连接层可获得最佳性能。在测试集上,我们的方法灵敏度为97.44%±1.15%,特异性为97.41±1.51%,精确度为97.34±1.49%,准确率为97.42±0.95%,F1分数为97.37±0.97%。该方法可协助放射科医生在日常工作中对脑磁共振图像进行酗酒筛查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f49/6470295/5a7441bd5099/fpsyt-10-00205-g0001.jpg

相似文献

1
Alcoholism Identification Based on an AlexNet Transfer Learning Model.
Front Psychiatry. 2019 Apr 11;10:205. doi: 10.3389/fpsyt.2019.00205. eCollection 2019.
2
Application of Deep Learning in Neuroradiology: Brain Haemorrhage Classification Using Transfer Learning.
Comput Intell Neurosci. 2019 Jun 3;2019:4629859. doi: 10.1155/2019/4629859. eCollection 2019.
5
Glioma Grading on Conventional MR Images: A Deep Learning Study With Transfer Learning.
Front Neurosci. 2018 Nov 15;12:804. doi: 10.3389/fnins.2018.00804. eCollection 2018.
6
Research on image recognition of tomato leaf diseases based on improved AlexNet model.
Heliyon. 2024 Jun 24;10(13):e33555. doi: 10.1016/j.heliyon.2024.e33555. eCollection 2024 Jul 15.
8
Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture.
J Comput Sci Technol. 2022;37(2):330-343. doi: 10.1007/s11390-020-0679-8. Epub 2022 Mar 31.
10
Scene Classification for Sports Video Summarization Using Transfer Learning.
Sensors (Basel). 2020 Mar 18;20(6):1702. doi: 10.3390/s20061702.

引用本文的文献

1
2
Pruning-based oversampling technique with smoothed bootstrap resampling for imbalanced clinical dataset of Covid-19.
J King Saud Univ Comput Inf Sci. 2022 Oct;34(9):7830-7839. doi: 10.1016/j.jksuci.2021.09.021. Epub 2021 Sep 30.
3
Transfer learning-based English translation text classification in a multimedia network environment.
PeerJ Comput Sci. 2024 Jan 31;10:e1842. doi: 10.7717/peerj-cs.1842. eCollection 2024.
8
Integrated network analyses identify MYB4R1 neofunctionalization in the UV-B adaptation of Tartary buckwheat.
Plant Commun. 2022 Nov 14;3(6):100414. doi: 10.1016/j.xplc.2022.100414. Epub 2022 Aug 2.
9
Evaluation of 1D and 2D Deep Convolutional Neural Networks for Driving Event Recognition.
Sensors (Basel). 2022 Jun 1;22(11):4226. doi: 10.3390/s22114226.
10
VISPNN: VGG-inspired Stochastic Pooling Neural Network.
Comput Mater Contin. 2022;70(2):3081-3097. doi: 10.32604/cmc.2022.019447. Epub 2021 Sep 27.

本文引用的文献

1
Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI.
J Neural Eng. 2019 Apr;16(2):026007. doi: 10.1088/1741-2552/aaf3f6. Epub 2018 Nov 26.
2
Introduction: Alcohol and Alcoholism.
Clin Liver Dis. 2019 Feb;23(1):1-10. doi: 10.1016/j.cld.2018.09.009.
3
Frequent solitary drinking mediates the associations between negative affect and harmful drinking in emerging adults.
Addict Behav. 2018 Dec;87:115-121. doi: 10.1016/j.addbeh.2018.06.026. Epub 2018 Jun 26.
4
Soluble Klotho and Brain Atrophy in Alcoholism.
Alcohol Alcohol. 2018 Sep 1;53(5):503-510. doi: 10.1093/alcalc/agy037.
5
Biased Dropout and Crossmap Dropout: Learning towards effective Dropout regularization in convolutional neural network.
Neural Netw. 2018 Aug;104:60-67. doi: 10.1016/j.neunet.2018.03.016. Epub 2018 Apr 9.
8
Image-based quantitative analysis of gold immunochromatographic strip via cellular neural network approach.
IEEE Trans Med Imaging. 2014 May;33(5):1129-36. doi: 10.1109/TMI.2014.2305394.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验