Suppr超能文献

VISPNN:受VGG启发的随机池化神经网络。

VISPNN: VGG-inspired Stochastic Pooling Neural Network.

作者信息

Wang Shui-Hua, Khan Muhammad Attique, Zhang Yu-Dong

机构信息

School of Mathematics and Actuarial Science, University of Leicester, LE1 7RH, United Kingdom.

Department of Computer Science, HITEC University Taxila, Taxila, Pakistan.

出版信息

Comput Mater Contin. 2022;70(2):3081-3097. doi: 10.32604/cmc.2022.019447. Epub 2021 Sep 27.

Abstract

AIM

Alcoholism is a disease that a patient becomes dependent or addicted to alcohol. This paper aims to design a novel artificial intelligence model that can recognize alcoholism more accurately.

METHODS

We propose the VGG-Inspired stochastic pooling neural network (VISPNN) model based on three components: (i) a VGG-inspired mainstay network, (ii) the stochastic pooling technique, which aims to outperform traditional max pooling and average pooling, and (iii) an improved 20-way data augmentation (Gaussian noise, salt-and-pepper noise, speckle noise, Poisson noise, horizontal shear, vertical shear, rotation, Gamma correction, random translation, and scaling on both raw image and its horizontally mirrored image). In addition, two networks (Net-I and Net-II) are proposed in ablation studies. Net-I is based on VISPNN by replacing stochastic pooling with ordinary max pooling. Net-II removes the 20-way data augmentation.

RESULTS

The results by ten runs of 10-fold cross-validation show that our VISPNN model gains a sensitivity of 97.98±1.32, a specificity of 97.80±1.35, a precision of 97.78±1.35, an accuracy of 97.89±1.11, an F1 score of 97.87±1.12, an MCC of 95.79±2.22, an FMI of 97.88±1.12, and an AUC of 0.9849, respectively.

CONCLUSION

The performance of our VISPNN model is better than two internal networks (Net-I and Net-II) and ten state-of-the-art alcoholism recognition methods.

摘要

目的

酒精中毒是一种患者对酒精产生依赖或成瘾的疾病。本文旨在设计一种能够更准确识别酒精中毒的新型人工智能模型。

方法

我们基于三个组件提出了受VGG启发的随机池化神经网络(VISPNN)模型:(i)一个受VGG启发的主干网络,(ii)旨在超越传统最大池化和平均池化的随机池化技术,以及(iii)一种改进的20种方式的数据增强(高斯噪声、椒盐噪声、斑点噪声、泊松噪声、水平剪切、垂直剪切、旋转、伽马校正、随机平移以及对原始图像及其水平镜像图像进行缩放)。此外,在消融研究中提出了两个网络(网络I和网络II)。网络I基于VISPNN,用普通最大池化替换随机池化。网络II去除了20种方式的数据增强。

结果

十次运行的十折交叉验证结果表明,我们的VISPNN模型的灵敏度为97.98±1.32,特异性为97.80±1.35,精度为97.78±1.35,准确率为97.89±1.11,F1分数为97.87±1.12,马修斯相关系数为95.79±2.22,Fowlkes-Mallows指数为97.88±1.12,曲线下面积为0.9849。

结论

我们的VISPNN模型的性能优于两个内部网络(网络I和网络II)以及十种最先进的酒精中毒识别方法。

相似文献

1
VISPNN: VGG-inspired Stochastic Pooling Neural Network.VISPNN:受VGG启发的随机池化神经网络。
Comput Mater Contin. 2022;70(2):3081-3097. doi: 10.32604/cmc.2022.019447. Epub 2021 Sep 27.
8
Deep Fractional Max Pooling Neural Network for COVID-19 Recognition.用于 COVID-19 识别的深度分数最大池化神经网络。
Front Public Health. 2021 Aug 10;9:726144. doi: 10.3389/fpubh.2021.726144. eCollection 2021.

本文引用的文献

1
Drug Repurposing of the Alcohol Abuse Medication Disulfiram as an Anti-Parasitic Agent.将酒精滥用药物双硫仑重新用作抗寄生虫药物
Front Cell Infect Microbiol. 2021 Mar 11;11:633194. doi: 10.3389/fcimb.2021.633194. eCollection 2021.
6
The Inferior Colliculus in Alcoholism and Beyond.酒精中毒及其他情况下的下丘。
Front Syst Neurosci. 2020 Dec 11;14:606345. doi: 10.3389/fnsys.2020.606345. eCollection 2020.
9
Alcoholism Identification Based on an AlexNet Transfer Learning Model.基于AlexNet迁移学习模型的酒精中毒识别
Front Psychiatry. 2019 Apr 11;10:205. doi: 10.3389/fpsyt.2019.00205. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验