Wang Shui-Hua, Khan Muhammad Attique, Zhang Yu-Dong
School of Mathematics and Actuarial Science, University of Leicester, LE1 7RH, United Kingdom.
Department of Computer Science, HITEC University Taxila, Taxila, Pakistan.
Comput Mater Contin. 2022;70(2):3081-3097. doi: 10.32604/cmc.2022.019447. Epub 2021 Sep 27.
Alcoholism is a disease that a patient becomes dependent or addicted to alcohol. This paper aims to design a novel artificial intelligence model that can recognize alcoholism more accurately.
We propose the VGG-Inspired stochastic pooling neural network (VISPNN) model based on three components: (i) a VGG-inspired mainstay network, (ii) the stochastic pooling technique, which aims to outperform traditional max pooling and average pooling, and (iii) an improved 20-way data augmentation (Gaussian noise, salt-and-pepper noise, speckle noise, Poisson noise, horizontal shear, vertical shear, rotation, Gamma correction, random translation, and scaling on both raw image and its horizontally mirrored image). In addition, two networks (Net-I and Net-II) are proposed in ablation studies. Net-I is based on VISPNN by replacing stochastic pooling with ordinary max pooling. Net-II removes the 20-way data augmentation.
The results by ten runs of 10-fold cross-validation show that our VISPNN model gains a sensitivity of 97.98±1.32, a specificity of 97.80±1.35, a precision of 97.78±1.35, an accuracy of 97.89±1.11, an F1 score of 97.87±1.12, an MCC of 95.79±2.22, an FMI of 97.88±1.12, and an AUC of 0.9849, respectively.
The performance of our VISPNN model is better than two internal networks (Net-I and Net-II) and ten state-of-the-art alcoholism recognition methods.
酒精中毒是一种患者对酒精产生依赖或成瘾的疾病。本文旨在设计一种能够更准确识别酒精中毒的新型人工智能模型。
我们基于三个组件提出了受VGG启发的随机池化神经网络(VISPNN)模型:(i)一个受VGG启发的主干网络,(ii)旨在超越传统最大池化和平均池化的随机池化技术,以及(iii)一种改进的20种方式的数据增强(高斯噪声、椒盐噪声、斑点噪声、泊松噪声、水平剪切、垂直剪切、旋转、伽马校正、随机平移以及对原始图像及其水平镜像图像进行缩放)。此外,在消融研究中提出了两个网络(网络I和网络II)。网络I基于VISPNN,用普通最大池化替换随机池化。网络II去除了20种方式的数据增强。
十次运行的十折交叉验证结果表明,我们的VISPNN模型的灵敏度为97.98±1.32,特异性为97.80±1.35,精度为97.78±1.35,准确率为97.89±1.11,F1分数为97.87±1.12,马修斯相关系数为95.79±2.22,Fowlkes-Mallows指数为97.88±1.12,曲线下面积为0.9849。
我们的VISPNN模型的性能优于两个内部网络(网络I和网络II)以及十种最先进的酒精中毒识别方法。