Department of Informatics, University of Leicester, Leicester, LE1 7RH, UK.
School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210046, China.
J Med Syst. 2017 Nov 17;42(1):2. doi: 10.1007/s10916-017-0845-x.
Alcohol use disorder (AUD) is an important brain disease. It alters the brain structure. Recently, scholars tend to use computer vision based techniques to detect AUD. We collected 235 subjects, 114 alcoholic and 121 non-alcoholic. Among the 235 image, 100 images were used as training set, and data augmentation method was used. The rest 135 images were used as test set. Further, we chose the latest powerful technique-convolutional neural network (CNN) based on convolutional layer, rectified linear unit layer, pooling layer, fully connected layer, and softmax layer. We also compared three different pooling techniques: max pooling, average pooling, and stochastic pooling. The results showed that our method achieved a sensitivity of 96.88%, a specificity of 97.18%, and an accuracy of 97.04%. Our method was better than three state-of-the-art approaches. Besides, stochastic pooling performed better than other max pooling and average pooling. We validated CNN with five convolution layers and two fully connected layers performed the best. The GPU yielded a 149× acceleration in training and a 166× acceleration in test, compared to CPU.
酒精使用障碍(AUD)是一种重要的脑部疾病。它会改变大脑结构。最近,学者们倾向于使用基于计算机视觉的技术来检测 AUD。我们收集了 235 名受试者,其中 114 名酗酒者和 121 名非酗酒者。在这 235 张图像中,有 100 张被用作训练集,并使用了数据增强方法。其余 135 张图像被用作测试集。此外,我们选择了最新的强大技术——基于卷积层、修正线性单元层、池化层、全连接层和 softmax 层的卷积神经网络(CNN)。我们还比较了三种不同的池化技术:最大池化、平均池化和随机池化。结果表明,我们的方法的灵敏度为 96.88%,特异性为 97.18%,准确率为 97.04%。我们的方法优于三种最先进的方法。此外,随机池化的性能优于其他最大池化和平均池化。我们使用五个卷积层和两个全连接层验证了 CNN,结果表明它的表现最佳。与 CPU 相比,GPU 在训练时的加速比为 149 倍,在测试时的加速比为 166 倍。