Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.
Adv Mater. 2019 Jun;31(26):e1806656. doi: 10.1002/adma.201806656. Epub 2019 Apr 29.
Chemical synthesis is performed by reacting different chemical building blocks with defined stoichiometry, while meeting additional conditions, such as temperature and reaction time. Such a procedure is especially suited for automation and miniaturization. Life sciences lead the way to synthesizing millions of different oligonucleotides in extremely miniaturized reaction sites, e.g., pinpointing active genes in whole genomes, while chemistry advances different types of automation. Recent progress in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging could match miniaturized chemical synthesis with a powerful analytical tool to validate the outcome of many different synthesis pathways beyond applications in the life sciences. Thereby, due to the radical miniaturization of chemical synthesis, thousands of molecules can be synthesized. This in turn should allow ambitious research, e.g., finding novel synthesis routes or directly screening for photocatalysts. Herein, different technologies are discussed that might be involved in this endeavor. A special emphasis is given to the obstacles that need to be tackled when depositing tiny amounts of materials to many different extremely miniaturized reaction sites.
化学合成是通过以特定化学计量比反应不同的化学构建块来完成的,同时满足其他条件,如温度和反应时间。这种方法特别适合自动化和微型化。生命科学引领着在极其微型化的反应场所合成数百万种不同寡核苷酸的道路,例如,在整个基因组中定位活性基因,而化学则推动着不同类型的自动化发展。基质辅助激光解吸/电离质谱(MALDI-MS)成像的最新进展可以将微型化化学合成与强大的分析工具相匹配,从而验证许多不同合成途径的结果,而不仅仅局限于生命科学领域的应用。因此,由于化学合成的彻底微型化,可以合成数千种分子。这反过来又应该允许进行雄心勃勃的研究,例如,寻找新的合成途径或直接筛选光催化剂。本文讨论了可能涉及到这一努力的不同技术。特别强调了在将微量材料沉积到许多非常微型化的反应场所时需要解决的障碍。