Suppr超能文献

让弱势儿童发声:机器学习分析语音可检测儿童早期的焦虑和抑郁。

Giving Voice to Vulnerable Children: Machine Learning Analysis of Speech Detects Anxiety and Depression in Early Childhood.

出版信息

IEEE J Biomed Health Inform. 2019 Nov;23(6):2294-2301. doi: 10.1109/JBHI.2019.2913590. Epub 2019 Apr 26.

Abstract

Childhood anxiety and depression often go undiagnosed. If left untreated these conditions, collectively known as internalizing disorders, are associated with long-term negative outcomes including substance abuse and increased risk for suicide. This paper presents a new approach for identifying young children with internalizing disorders using a 3-min speech task. We show that machine learning analysis of audio data from the task can be used to identify children with an internalizing disorder with 80% accuracy (54% sensitivity, 93% specificity). The speech features most discriminative of internalizing disorder are analyzed in detail, showing that affected children exhibit especially low-pitch voices, with repeatable speech inflections and content, and high-pitched response to surprising stimuli relative to controls. This new tool is shown to outperform clinical thresholds on parent-reported child symptoms, which identify children with an internalizing disorder with lower accuracy (67-77% versus 80%), and similar specificity (85-100% versus 93%), and sensitivity (0-58% versus 54%) in this sample. These results point toward the future use of this approach for screening children for internalizing disorders so that interventions can be deployed when they have the highest chance for long-term success.

摘要

儿童期焦虑和抑郁常常得不到诊断。如果这些病症得不到治疗,即被统称为“内化障碍”的一系列病症,可能会导致长期的负面后果,包括药物滥用和自杀风险增加。本文提出了一种使用 3 分钟演讲任务识别内化障碍儿童的新方法。我们表明,使用任务的音频数据进行机器学习分析可以以 80%的准确率(54%的灵敏度,93%的特异性)识别出患有内化障碍的儿童。详细分析了对内化障碍最具区分性的语音特征,结果表明,受影响的儿童表现出特别低的音调,其语音语调重复且内容单调,并且对令人惊讶的刺激的反应音调偏高。与基于父母报告的儿童症状的临床阈值相比,这种新工具显示出更高的性能,前者识别出内化障碍儿童的准确率(67-77%比 80%)、特异性(85-100%比 93%)和敏感性(0-58%比 54%)均相似,但在该样本中前者的特异性更高。这些结果表明,将来可以使用这种方法对儿童进行内化障碍筛查,以便在最有可能取得长期成功的情况下进行干预。

相似文献

引用本文的文献

2
Sentence-level multi-modal feature learning for depression recognition.用于抑郁症识别的句子级多模态特征学习
Front Psychiatry. 2025 Mar 21;16:1439577. doi: 10.3389/fpsyt.2025.1439577. eCollection 2025.
4
Preschool Mood Disorders: A Review of the Literature from 2017 to 2024.学龄前情绪障碍:2017年至2024年文献综述
Child Adolesc Psychiatr Clin N Am. 2025 Apr;34(2):325-337. doi: 10.1016/j.chc.2024.07.007. Epub 2024 Aug 31.
5
The State of Digital Biomarkers in Mental Health.心理健康领域数字生物标志物的现状。
Digit Biomark. 2024 Nov 22;8(1):210-217. doi: 10.1159/000542320. eCollection 2024 Jan-Dec.

本文引用的文献

6
Depression and Anxiety in Preschoolers: A Review of the Past 7 Years.学龄前儿童的抑郁与焦虑:过去七年综述
Child Adolesc Psychiatr Clin N Am. 2017 Jul;26(3):503-522. doi: 10.1016/j.chc.2017.02.006. Epub 2017 Mar 18.
7
ECOLOGICALLY VALID LONG-TERM MOOD MONITORING OF INDIVIDUALS WITH BIPOLAR DISORDER USING SPEECH.使用语音对双相情感障碍个体进行生态有效长期情绪监测。
Proc IEEE Int Conf Acoust Speech Signal Process. 2014 May;2014:4858-4862. doi: 10.1109/ICASSP.2014.6854525. Epub 2014 Jul 14.
8
Movements Indicate Threat Response Phases in Children at Risk for Anxiety.动作表明焦虑风险儿童的威胁反应阶段。
IEEE J Biomed Health Inform. 2017 Sep;21(5):1460-1465. doi: 10.1109/JBHI.2016.2603159. Epub 2016 Aug 25.
9
The use of technology in Suicide Prevention.技术在自杀预防中的应用。
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:7316-9. doi: 10.1109/EMBC.2015.7320081.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验