Suppr超能文献

对情感研究中整合多种非语言渠道的更强烈呼吁。

A Louder Call for the Integration of Multiple Nonverbal Channels in the Study of Affect.

作者信息

Morningstar Michele

机构信息

Department of Psychology, Queen's University, Kingston, Canada.

Centre for Neuroscience Studies, Queen's University, Kingston, Canada.

出版信息

Affect Sci. 2024 Aug 26;5(3):201-208. doi: 10.1007/s42761-024-00265-x. eCollection 2024 Sep.

Abstract

Affective science has increasingly sought to represent emotional experiences multimodally, measuring affect through a combination of self-report ratings, linguistic output, physiological measures, and/or nonverbal expressions. However, despite widespread recognition that non-facial nonverbal cues are an important facet of expressive behavior, measures of nonverbal expressions commonly focus solely on facial movements. This Commentary represents a call for affective scientists to integrate a larger range of nonverbal cues-including gestures, postures, and vocal cues-alongside facial cues in efforts to represent the experience of emotion and its communication. Using the measurement and analysis of vocal cues as an illustrative case, the Commentary considers challenges, potential solutions, and the theoretical and translational significance of working to integrate multiple nonverbal channels in the study of affect.

摘要

情感科学越来越多地寻求以多模态方式呈现情感体验,通过自我报告评分、语言输出、生理测量和/或非语言表达的组合来测量情感。然而,尽管人们普遍认识到非面部非语言线索是表达行为的一个重要方面,但非语言表达的测量通常只关注面部动作。本评论呼吁情感科学家将更广泛的非语言线索——包括手势、姿势和声音线索——与面部线索结合起来,以呈现情感体验及其交流。本评论以声音线索的测量和分析为例,探讨了在情感研究中整合多种非语言渠道所面临的挑战、潜在解决方案以及理论和转化意义。

相似文献

7
Autism and emotion recognition technologies in the workplace.职场中的自闭症与情感识别技术。
Autism. 2025 Mar;29(3):554-565. doi: 10.1177/13623613241279704. Epub 2024 Sep 16.

本文引用的文献

2
Yucatec Maya Children's Responding to Emotional Challenge.尤卡坦玛雅儿童对情感挑战的反应。
Affect Sci. 2023 Aug 14;4(4):644-661. doi: 10.1007/s42761-023-00205-1. eCollection 2023 Dec.
5
Age Differences in Physiological Reactivity to Daily Emotional Experiences.日常情绪体验的生理反应中的年龄差异。
Affect Sci. 2023 Aug 12;4(3):487-499. doi: 10.1007/s42761-023-00207-z. eCollection 2023 Sep.
7
Advancing Naturalistic Affective Science with Deep Learning.利用深度学习推动自然主义情感科学发展。
Affect Sci. 2023 Aug 25;4(3):550-562. doi: 10.1007/s42761-023-00215-z. eCollection 2023 Sep.
8
Synergistic Opportunities for Affective Science and Behavior Change.情感科学与行为改变的协同机遇。
Affect Sci. 2023 Aug 30;4(3):586-590. doi: 10.1007/s42761-023-00216-y. eCollection 2023 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验