Suppr超能文献

量化学龄前儿童焦虑症的风险:一种机器学习方法。

Quantifying Risk for Anxiety Disorders in Preschool Children: A Machine Learning Approach.

作者信息

Carpenter Kimberly L H, Sprechmann Pablo, Calderbank Robert, Sapiro Guillermo, Egger Helen L

机构信息

Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America.

Electrical and Computer Engineering, Biomedical Engineering, and Computer Science, Duke University, Durham, North Carolina, United States of America.

出版信息

PLoS One. 2016 Nov 23;11(11):e0165524. doi: 10.1371/journal.pone.0165524. eCollection 2016.

Abstract

Early childhood anxiety disorders are common, impairing, and predictive of anxiety and mood disorders later in childhood. Epidemiological studies over the last decade find that the prevalence of impairing anxiety disorders in preschool children ranges from 0.3% to 6.5%. Yet, less than 15% of young children with an impairing anxiety disorder receive a mental health evaluation or treatment. One possible reason for the low rate of care for anxious preschoolers is the lack of affordable, timely, reliable and valid tools for identifying young children with clinically significant anxiety. Diagnostic interviews assessing psychopathology in young children require intensive training, take hours to administer and code, and are not available for use outside of research settings. The Preschool Age Psychiatric Assessment (PAPA) is a reliable and valid structured diagnostic parent-report interview for assessing psychopathology, including anxiety disorders, in 2 to 5 year old children. In this paper, we apply machine-learning tools to already collected PAPA data from two large community studies to identify sub-sets of PAPA items that could be developed into an efficient, reliable, and valid screening tool to assess a young child's risk for an anxiety disorder. Using machine learning, we were able to decrease by an order of magnitude the number of items needed to identify a child who is at risk for an anxiety disorder with an accuracy of over 96% for both generalized anxiety disorder (GAD) and separation anxiety disorder (SAD). Additionally, rather than considering GAD or SAD as discrete/binary entities, we present a continuous risk score representing the child's risk of meeting criteria for GAD or SAD. Identification of a short question-set that assesses risk for an anxiety disorder could be a first step toward development and validation of a relatively short screening tool feasible for use in pediatric clinics and daycare/preschool settings.

摘要

幼儿焦虑症很常见,具有损害性,且可预测儿童后期的焦虑症和情绪障碍。过去十年的流行病学研究发现,学龄前儿童中具有损害性的焦虑症患病率在0.3%至6.5%之间。然而,患有具有损害性焦虑症的幼儿中,接受心理健康评估或治疗的不到15%。对焦虑的学龄前儿童护理率低的一个可能原因是缺乏用于识别临床上有显著焦虑的幼儿的经济实惠、及时、可靠且有效的工具。评估幼儿精神病理学的诊断访谈需要强化培训,耗时数小时进行施测和编码,并且在研究环境之外无法使用。学龄前儿童精神病学评估(PAPA)是一种可靠且有效的结构化诊断家长报告访谈,用于评估2至5岁儿童的精神病理学,包括焦虑症。在本文中,我们将机器学习工具应用于从两项大型社区研究中已经收集的PAPA数据,以识别PAPA项目的子集,这些子集可以开发成一种高效、可靠且有效的筛查工具,以评估幼儿患焦虑症的风险。通过机器学习,我们能够将识别有焦虑症风险儿童所需的项目数量减少一个数量级,对于广泛性焦虑症(GAD)和分离焦虑症(SAD),准确率均超过96%。此外,我们不是将GAD或SAD视为离散/二元实体,而是提出一个连续的风险评分,代表儿童符合GAD或SAD标准的风险。识别一个评估焦虑症风险的简短问题集可能是朝着开发和验证一种相对简短的筛查工具迈出的第一步,该工具可在儿科诊所和日托/学前教育环境中使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc1/5120781/e845776525f2/pone.0165524.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验