Suppr超能文献

从异质性肿瘤中推断真正克隆性突变需要多少个样本?

How many samples are needed to infer truly clonal mutations from heterogenous tumours?

机构信息

Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön, 24306, Germany.

School of Mathematical Sciences, Xiamen University, Xiamen, 361005, People's Republic of China.

出版信息

BMC Cancer. 2019 Apr 29;19(1):403. doi: 10.1186/s12885-019-5597-1.

Abstract

BACKGROUND

Modern cancer treatment strategies aim to target tumour specific genetic (or epigenetic) alterations. Treatment response improves if these alterations are clonal, i.e. present in all cancer cells within tumours. However, the identification of truly clonal alterations is impaired by the tremendous intra-tumour genetic heterogeneity and unavoidable sampling biases.

METHODS

Here, we investigate the underlying causes of these spatial sampling biases and how the distribution and sizes of biopsies in sampling protocols can be optimised to minimize such biases.

RESULTS

We find that in the ideal case, less than a handful of samples can be enough to infer truly clonal mutations. The frequency of the largest sub-clone at diagnosis is the main factor determining the accuracy of truncal mutation estimation in structured tumours. If the first sub-clone is dominating the tumour, higher spatial dispersion of samples and larger sample size can increase the accuracy of the estimation. In such an improved sampling scheme, fewer samples will enable the detection of truly clonal alterations with the same probability.

CONCLUSIONS

Taking spatial tumour structure into account will decrease the probability to misclassify a sub-clonal mutation as clonal and promises better informed treatment decisions.

摘要

背景

现代癌症治疗策略旨在针对肿瘤特异性遗传(或表观遗传)改变。如果这些改变是克隆的,即在肿瘤内所有癌细胞中存在,那么治疗反应会改善。然而,由于肿瘤内存在巨大的遗传异质性和不可避免的采样偏差,真正克隆性改变的识别受到了阻碍。

方法

在这里,我们研究了这些空间采样偏差的根本原因,以及如何优化采样方案中的活检分布和大小,以最大程度地减少这些偏差。

结果

我们发现,在理想情况下,只需少数几个样本就足以推断真正的克隆突变。在诊断时最大亚克隆的频率是确定结构性肿瘤中主干突变估计准确性的主要因素。如果第一个亚克隆主导肿瘤,那么增加样本的空间分散度和增大样本量可以提高估计的准确性。在这种改进的采样方案中,较少的样本将以相同的概率检测到真正的克隆改变。

结论

考虑肿瘤的空间结构将降低将亚克隆突变错误分类为克隆的概率,并有望做出更好的治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61e5/6489174/ab5deb534ae2/12885_2019_5597_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验