Suppr超能文献

利用超高维全基因组关联研究中的稀疏正则化进行可靠的遗传力估计。

Reliable heritability estimation using sparse regularization in ultrahigh dimensional genome-wide association studies.

机构信息

School of Mathematical Sciences, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.

Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 East Zhongguancun Road, Beijing, 100190, China.

出版信息

BMC Bioinformatics. 2019 Apr 30;20(1):219. doi: 10.1186/s12859-019-2792-7.

Abstract

BACKGROUND

Data from genome-wide association studies (GWASs) have been used to estimate the heritability of human complex traits in recent years. Existing methods are based on the linear mixed model, with the assumption that the genetic effects are random variables, which is opposite to the fixed effect assumption embedded in the framework of quantitative genetics theory. Moreover, heritability estimators provided by existing methods may have large standard errors, which calls for the development of reliable and accurate methods to estimate heritability.

RESULTS

In this paper, we first investigate the influences of the fixed and random effect assumption on heritability estimation, and prove that these two assumptions are equivalent under mild conditions in the theoretical aspect. Second, we propose a two-stage strategy by first performing sparse regularization via cross-validated elastic net, and then applying variance estimation methods to construct reliable heritability estimations. Results on both simulated data and real data show that our strategy achieves a considerable reduction in the standard error while reserving the accuracy.

CONCLUSIONS

The proposed strategy allows for a reliable and accurate heritability estimation using GWAS data. It shows the promising future that reliable estimations can still be obtained with even a relatively restricted sample size, and should be especially useful for large-scale heritability analyses in the genomics era.

摘要

背景

近年来,基于全基因组关联研究(GWAS)的数据已被用于估计人类复杂性状的遗传力。现有的方法基于线性混合模型,假设遗传效应是随机变量,这与数量遗传学理论框架中隐含的固定效应假设相反。此外,现有方法提供的遗传力估计值可能具有较大的标准误差,因此需要开发可靠和准确的方法来估计遗传力。

结果

在本文中,我们首先研究了固定效应和随机效应假设对遗传力估计的影响,并从理论上证明了在温和条件下这两种假设是等效的。其次,我们提出了一种两阶段策略,首先通过交叉验证弹性网络进行稀疏正则化,然后应用方差估计方法构建可靠的遗传力估计值。模拟数据和真实数据的结果表明,我们的策略在保留准确性的同时,大大降低了标准误差。

结论

该策略允许使用 GWAS 数据进行可靠和准确的遗传力估计。它表明,即使样本量相对有限,仍能获得可靠的估计值,这在基因组学时代的大规模遗传力分析中应该特别有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dc4/6492418/845bed6bbb73/12859_2019_2792_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验