Suppr超能文献

基于自适应正则化深度神经网络的纳米光子结构智能快速设计

Smart and Rapid Design of Nanophotonic Structures by an Adaptive and Regularized Deep Neural Network.

作者信息

Li Renjie, Gu Xiaozhe, Shen Yuanwen, Li Ke, Li Zhen, Zhang Zhaoyu

机构信息

Shenzhen Key Laboratory of Semiconductor Lasers, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China.

The Future Network of Intelligence Institute (FNii), The Chinese University of Hong Kong, Shenzhen 518172, China.

出版信息

Nanomaterials (Basel). 2022 Apr 16;12(8):1372. doi: 10.3390/nano12081372.

Abstract

The design of nanophotonic structures based on deep learning is emerging rapidly in the research community. Design methods using Deep Neural Networks (DNN) are outperforming conventional physics-based simulations performed iteratively by human experts. Here, a self-adaptive and regularized DNN based on Convolutional Neural Networks (CNNs) for the smart and fast characterization of nanophotonic structures in high-dimensional design parameter space is presented. This proposed CNN model, named LRS-RCNN, utilizes dynamic learning rate scheduling and L2 regularization techniques to overcome overfitting and speed up training convergence and is shown to surpass the performance of all previous algorithms, with the exception of two metrics where it achieves a comparable level relative to prior works. We applied the model to two challenging types of photonic structures: 2D photonic crystals (e.g., L3 nanocavity) and 1D photonic crystals (e.g., nanobeam) and results show that LRS-RCNN achieves record-high prediction accuracies, strong generalizibility, and substantially faster convergence speed compared to prior works. Although still a proof-of-concept model, the proposed smart LRS-RCNN has been proven to greatly accelerate the design of photonic crystal structures as a state-of-the-art predictor for both -factor and . It can also be modified and generalized to predict any type of optical properties for designing a wide range of different nanophotonic structures. The complete dataset and code will be released to aid the development of related research endeavors.

摘要

基于深度学习的纳米光子结构设计在研究界正迅速兴起。使用深度神经网络(DNN)的设计方法优于人类专家迭代执行的传统基于物理的模拟。在此,提出了一种基于卷积神经网络(CNN)的自适应正则化DNN,用于在高维设计参数空间中智能快速地表征纳米光子结构。这个被称为LRS - RCNN的CNN模型利用动态学习率调度和L2正则化技术来克服过拟合并加速训练收敛,并且除了在两个指标上与先前工作达到可比水平外,其性能超过了所有先前的算法。我们将该模型应用于两种具有挑战性的光子结构类型:二维光子晶体(例如,L3纳米腔)和一维光子晶体(例如,纳米光束),结果表明,与先前工作相比,LRS - RCNN实现了创纪录的高预测精度、强大的泛化能力和显著更快的收敛速度。尽管仍然是一个概念验证模型,但所提出的智能LRS - RCNN已被证明作为双因素和的最先进预测器,能极大地加速光子晶体结构的设计。它还可以被修改和推广,以预测用于设计各种不同纳米光子结构的任何类型的光学特性。完整的数据集和代码将被发布,以助力相关研究工作的开展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b164/9030763/12366148709b/nanomaterials-12-01372-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验