Suppr超能文献

光学编码器的光子优势。

Photonic advantage of optical encoders.

作者信息

Huang Luocheng, Tanguy Quentin A A, Fröch Johannes E, Mukherjee Saswata, Böhringer Karl F, Majumdar Arka

机构信息

Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA.

Physics Department, University of Washington, Seattle, WA, 98195, USA.

出版信息

Nanophotonics. 2023 Nov 16;13(7):1191-1196. doi: 10.1515/nanoph-2023-0579. eCollection 2024 Mar.

Abstract

Light's ability to perform massive linear operations in parallel has recently inspired numerous demonstrations of optics-assisted artificial neural networks (ANN). However, a clear system-level advantage of optics over purely digital ANN has not yet been established. While linear operations can indeed be optically performed very efficiently, the lack of nonlinearity and signal regeneration require high-power, low-latency signal transduction between optics and electronics. Additionally, a large power is needed for lasers and photodetectors, which are often neglected in the calculation of the total energy consumption. Here, instead of mapping traditional digital operations to optics, we co-designed a hybrid optical-digital ANN, that operates on incoherent light, and is thus amenable to operations under ambient light. Keeping the latency and power constant between a purely digital ANN and a hybrid optical-digital ANN, we identified a low-power/latency regime, where an optical encoder provides higher classification accuracy than a purely digital ANN. We estimate our optical encoder enables ∼10 kHz rate operation of a hybrid ANN with a power of only 23 mW. However, in that regime, the overall classification accuracy is lower than what is achievable with higher power and latency. Our results indicate that optics can be advantageous over digital ANN in applications, where the overall performance of the ANN can be relaxed to prioritize lower power and latency.

摘要

光能够并行执行大规模线性运算,这一特性最近激发了众多光学辅助人工神经网络(ANN)的演示。然而,光学相对于纯数字人工神经网络在系统层面的明显优势尚未确立。虽然线性运算确实可以非常高效地通过光学方式执行,但缺乏非线性和信号再生需要在光学和电子之间进行高功率、低延迟的信号转换。此外,激光器和光电探测器需要大量功率,而这在总能耗计算中往往被忽视。在此,我们没有将传统数字运算映射到光学上,而是共同设计了一种混合光学 - 数字人工神经网络,它基于非相干光运行,因此适合在环境光下操作。在保持纯数字人工神经网络和混合光学 - 数字人工神经网络之间的延迟和功率不变的情况下,我们确定了一种低功率/低延迟模式,其中光学编码器比纯数字人工神经网络提供更高的分类精度。我们估计我们的光学编码器能够使混合人工神经网络以约10 kHz的速率运行,功率仅为23 mW。然而,在该模式下,整体分类精度低于在更高功率和延迟下所能达到的精度。我们的结果表明,在人工神经网络的整体性能可以放宽以优先考虑更低功率和延迟的应用中,光学相对于数字人工神经网络可能具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86dd/11501926/c344d0a2a889/j_nanoph-2023-0579_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验