RWTH Aachen University, AVT-Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany.
Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstraße 11a, 07745, Jena, Germany.
Microb Cell Fact. 2019 May 3;18(1):78. doi: 10.1186/s12934-019-1126-9.
Production of 2,3-butanediol from renewable resources is a promising measure to decrease the consumption of fossil resources in the chemical industry. One of the most influential parameters on biotechnological 2,3-butanediol production is the oxygen availability during the cultivation. As 2,3-butanediol is produced under microaerobic process conditions, a well-controlled oxygen supply is the key parameter to control biomass formation and 2,3-butanediol production. As biomass is on the one hand not the final product, but on the other hand the essential biocatalyst, the optimal compromise between biomass formation and 2,3-butanediol production has to be defined.
A shake flask methodology is presented to evaluate the effects of oxygen availability on 2,3-butanediol production with Bacillus licheniformis DSM 8785 by variation of the filling volume. A defined two-stage cultivation strategy was developed to investigate the metabolic response to different defined maximum oxygen transfer capacities at equal initial growth conditions. The respiratory quotient was measured online to determine the point of glucose depletion, as 2,3-butanediol is consumed afterwards. Based on this strategy, comparable results to stirred tank reactors were achieved. The highest space-time yield (1.3 g/L/h) and a 2,3-butanediol concentration of 68 g/L combined with low acetoin concentrations and avoided glycerol formation were achieved at a maximum oxygen transfer capacity of 13 mmol/L/h. The highest overall 2,3-butanediol concentration of 78 g/L was observed at a maximum oxygen transfer capacity of 4 mmol/L/h.
The presented shake flask approach reduces the experimental effort and costs providing a fast and reliable methodology to investigate the effects of oxygen availability. This can be applied especially on product and by-product formation under microaerobic conditions. Utilization of the maximum oxygen transfer capacity as measure for the oxygen availability allows for an easy adaption to other bioreactor setups and scales.
从可再生资源中生产 2,3-丁二醇是减少化学工业中化石资源消耗的一种很有前途的措施。在生物技术 2,3-丁二醇生产中,对氧可用性的影响是最重要的参数之一。由于 2,3-丁二醇是在微氧条件下生产的,因此,良好的氧气供应是控制生物量形成和 2,3-丁二醇生产的关键参数。由于生物量一方面不是最终产品,另一方面又是必不可少的生物催化剂,因此必须在生物量形成和 2,3-丁二醇生产之间找到最佳的平衡点。
本文提出了一种摇瓶方法,通过改变填充体积来评估氧可用性对凝结芽孢杆菌 DSM 8785生产 2,3-丁二醇的影响。开发了一种定义明确的两阶段培养策略,以研究在相同初始生长条件下,不同定义的最大氧气传递能力对代谢的影响。通过在线测量呼吸商来确定葡萄糖耗尽的点,因为随后 2,3-丁二醇被消耗。基于该策略,与搅拌罐反应器相比,获得了可比的结果。在最大氧气传递能力为 13mmol/L/h 时,获得了最高的时空产率(1.3g/L/h)和 68g/L 的 2,3-丁二醇浓度,同时副产物乙酰基丁醇浓度较低,避免了甘油的形成。在最大氧气传递能力为 4mmol/L/h 时,观察到最高的总 2,3-丁二醇浓度为 78g/L。
本文提出的摇瓶方法减少了实验工作量和成本,提供了一种快速可靠的方法来研究氧可用性的影响。这种方法特别适用于微氧条件下的产物和副产物的形成。利用最大氧气传递能力作为氧可用性的衡量标准,可以很容易地适应其他生物反应器的设置和规模。