Suppr超能文献

整合代谢组学和转录组学分析,突出大豆根系通过调节磷酸化代谢物过程对磷缺乏的响应。

Integration of metabolome and transcriptome analyses highlights soybean roots responding to phosphorus deficiency by modulating phosphorylated metabolite processes.

机构信息

Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China.

Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China.

出版信息

Plant Physiol Biochem. 2019 Jun;139:697-706. doi: 10.1016/j.plaphy.2019.04.033. Epub 2019 Apr 26.

Abstract

Phosphorus (P) is a major constituent of biomolecules in plant cells, and is an essential plant macronutrient. Low phosphate (Pi) availability in soils is a major constraint on plant growth. Although a complex variety of plant responses to Pi starvation has been well documented, few studies have integrated both global transcriptome and metabolome analyses to shed light on molecular mechanisms underlying metabolic responses to P deficiency. This study is the first time to investigate global profiles of metabolites and transcripts in soybean (Glycine max) roots subjected to Pi starvation through targeted liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS/MS) and RNA-sequencing analyses. This integrated analysis allows for assessing coordinated transcriptomic and metabolic responses in terms of both pathway enzyme expression and regulatory levels. Between two Pi availability treatments, a total of 155 metabolites differentially accumulated in soybean roots, of which were phosphorylated metabolites, flavonoids and amino acids. Meanwhile, a total of 1644 differentially expressed genes (DEGs) were identified in soybean roots, including 1199 up-regulated and 445 down-regulated genes. Integration of metabolome and transcriptome analyses revealed Pi starvation responsive connection between specific metabolic processes in soybean roots, especially metabolic processes involving phosphorylated metabolites (e.g., phosphorylated lipids and nucleic acids). Taken together, this study suggests that complex molecular responses scavenging internal Pi from phosphorylated metabolites are typical adaptive strategies soybean roots employ as responses to Pi starvation. Identified DEGs will provide potential target region for future efforts to develop P-efficient soybean cultivars.

摘要

磷(P)是植物细胞中生物分子的主要组成部分,也是植物的主要大量营养素。土壤中低磷(Pi)可用性是植物生长的主要限制因素。尽管植物对磷饥饿的多种复杂反应已有充分的记录,但很少有研究将全局转录组和代谢组分析结合起来,以揭示代谢对 P 缺乏的反应的分子机制。本研究首次通过靶向液相色谱电喷雾电离质谱(LC-ESI-MS/MS)和 RNA-seq 分析,研究了大豆(Glycine max)根系在 Pi 饥饿下的全局代谢物和转录本图谱。这种综合分析可以评估途径酶表达和调节水平的协同转录组和代谢反应。在两种 Pi 供应处理之间,大豆根系中共有 155 种代谢物差异积累,其中包括磷酸化代谢物、类黄酮和氨基酸。同时,在大豆根系中鉴定出了 1644 个差异表达基因(DEGs),其中包括 1199 个上调基因和 445 个下调基因。代谢组和转录组分析的整合揭示了大豆根系中特定代谢过程之间对 Pi 饥饿的响应连接,特别是涉及磷酸化代谢物(例如,磷酸化脂质和核酸)的代谢过程。总之,本研究表明,从磷酸化代谢物中清除内部 Pi 的复杂分子反应是大豆根系对 Pi 饥饿的典型适应策略。鉴定出的 DEGs 将为未来开发高效 P 的大豆品种提供潜在的目标区域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验