National Institute of Technology, Tiruchirappalli, India.
Department of Physiology Trichy, SRM Medical College Hospital & Research Centre, Irungalur, Tiruchirappalli, India.
J Med Syst. 2019 May 6;43(6):167. doi: 10.1007/s10916-019-1312-7.
The interpretation of various cardiovascular blood flow abnormalities can be identified using Electrocardiogram (ECG). The predominant anomaly due to the blood flow dynamics leads to the occurrence of cardiac arrhythmias in the cardiac system. In this work, estimation of cardiac output (CO) parameter using blood flow rate analysis is carried out, which is a vital parameter to identify the subjects with left- ventricular arrhythmias (LVA). In particular, LVA is a resultant component of characteristic changes in blood rheology (blood flow rate). The CO is an intrinsic parameter derived from the stroke volume (SV) characterized by end-diastolic/systolic volumes (EDV/ESV) and heart rate. The pumping of blood from left ventricle (LV) reconciles in to R-R intervals depicted on ECG, which are used for heart rate estimation. The deviation from the nominal values of CO implies that, the subject is more prone to LVA. Further, the identification of subjects with LVA is accomplished by computing the features from the ECG signals. The proposed Feature Ranking Score (FRS) algorithm employs different statistical parameters to label the score of the extracted features. The feature score enables the selection optimal features for classification. The optimal features are further given to the Least Square- Support Vector Machine (LS-SVM) classifier for training and testing phases. The signals are acquired from public domain MIT-BIH arrhythmia database, used for validating the proposed technique for identifying the LVA using blood flow.
可以使用心电图(ECG)来解释各种心血管血流异常。由于血流动力学引起的主要异常,导致心脏系统发生心律失常。在这项工作中,使用血流率分析来估算心输出量(CO)参数,这是识别左心室心律失常(LVA)患者的重要参数。特别是,LVA 是血液流变学(血流率)特征变化的结果成分。CO 是由舒张末期/收缩末期容积(EDV/ESV)和心率特征化的每搏输出量(SV)衍生的固有参数。从左心室(LV)泵出的血液与心电图(ECG)上显示的 R-R 间隔一致,用于估算心率。CO 的偏离正常值意味着,患者更容易发生 LVA。此外,通过计算 ECG 信号的特征来识别患有 LVA 的患者。所提出的特征排序得分(FRS)算法使用不同的统计参数来标记提取特征的得分。特征得分可用于选择最佳的分类特征。然后将最优特征进一步提供给最小二乘-支持向量机(LS-SVM)分类器进行训练和测试阶段。信号是从公共领域的 MIT-BIH 心律失常数据库中获取的,用于验证使用血流识别 LVA 的拟议技术。