Trautmann Anika, Roth Gian-Luca, Nujiqi Benedikt, Walther Thomas, Hellmann Ralf
Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, Wuerzburger Strasse 45, 63743 Aschaffenburg, Germany.
2Institute of Applied Physics, Technische Universität Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany.
Microsyst Nanoeng. 2019 Feb 25;5:6. doi: 10.1038/s41378-019-0046-5. eCollection 2019.
Microneedle-based microfluidic systems have a great potential to become well-accepted medical devices for simple, accurate, and painless drug delivery and lab-on-a-chip diagnostics. In this work, we report on a novel hybrid approach combining femtosecond direct laser written microneedles with femtosecond laser generated microfluidic channels providing an important step towards versatile medical point-of-care systems. Hollow microneedle arrays are fabricated by a laser system designed for two-photon polymerization applications. Compression tests of two different types of truncated cone-shaped microneedle arrays prepared from OrmoComp® give information about the microneedle mechanical strength, and the results are compared to skin insertion forces. Three-dimensional microchannels are directly created inside PMMA bulk material by an ultrashort pulse laser system with vertical channels having adjustable cross-sectional areas, which allow attaching of microneedles to the microfluidic system. A comprehensive parameter study varying pulse duration and repetition rate is performed on two-photon polymerization to identify an optimal laser power range for fabricating microneedles using the same pulse duration and repetition rate as for microchannels. This addresses the advantage of a single laser system process that overcomes complex fabrication methods. A proof of concept flow test with a rhodamine B dye solution in distilled water demonstrates that the combination of microneedles and microchannels qualifies for microfluidic injection and extraction applications.
基于微针的微流控系统有很大潜力成为被广泛接受的医疗设备,用于简单、准确且无痛的药物递送和芯片实验室诊断。在这项工作中,我们报告了一种新颖的混合方法,该方法将飞秒直接激光写入微针与飞秒激光产生的微流控通道相结合,这是迈向多功能医疗即时护理系统的重要一步。空心微针阵列由专为双光子聚合应用设计的激光系统制造。对由OrmoComp®制备的两种不同类型的截锥形微针阵列进行压缩测试,以获取有关微针机械强度的信息,并将结果与皮肤插入力进行比较。通过具有垂直通道且横截面面积可调节的超短脉冲激光系统在聚甲基丙烯酸甲酯(PMMA)块状材料内部直接创建三维微通道,这使得微针能够连接到微流控系统。对双光子聚合进行了一项全面的参数研究,该研究改变脉冲持续时间和重复频率,以确定在使用与微通道相同的脉冲持续时间和重复频率来制造微针时的最佳激光功率范围。这体现了单一激光系统工艺的优势,该工艺克服了复杂的制造方法。用蒸馏水中的罗丹明B染料溶液进行的概念验证流动测试表明,微针和微通道的组合适用于微流控注射和提取应用。