Suppr超能文献

具有定制曲折度和微孔率的聚二甲基硅氧烷微血管的3D纳米打印:直接激光写入

3D nanoprinting of PDMS microvessels with tailored tortuosity and microporosity direct laser writing.

作者信息

Xu Xin, Qiu Yunxiu, Chen Chen-Yu, Carton Molly, Campbell Paige M R, Chowdhury A Muhaymin, Bandyopadhyay Bidhan C, Bentley William E, Smith Bryan Ronain, Sochol Ryan D

机构信息

Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.

Institute for Quantitative Health Science and Engineering, Department of Chemical Engineering and Material Science, Michigan State University, East Lan-sing, MI, 48824, USA.

出版信息

Lab Chip. 2025 Apr 8;25(8):1947-1958. doi: 10.1039/d4lc01051e.

Abstract

Microvessels (, capillaries) are ubiquitous throughout human anatomy, yet recreating their three-dimensional (3D) microfluidic and architectural sophistication at biologically accurate length scales has remained a critical challenge. To overcome this barrier, here we report a hybrid additive manufacturing-or "3D printing"-strategy in which "Two-Photon Direct Laser Writing (DLW)" is used to nanoprint microvessels of arbitrary design directly atop "Liquid-Crystal Display (LCD)" 3D-printed microfluidic chips. Fabrication results indicated effective production of 100 μm-diameter 3D polydimethylsiloxane (PDMS) microfluidic vessels with 5 μm-thick walls-featuring arrays of pre-designed 5 μm-diameter micropores-as well as three discrete spiralled, intertwined microvessels. Experimental results with MDA-MB-231 epithelial breast cancer cells revealed the ability for the 3D PDMS microvessels to support cell culture. In combination, these results suggest that the presented strategy for 3D nanoprinting PDMS microvessels with custom-designed architectures and microporosity offers a promising pathway to enable new classes of "organ-on-a-chip (OOC)" systems for wide-ranging biomedical applications.

摘要

微血管(即毛细血管)在人体解剖结构中无处不在,然而,要在生物学精确的长度尺度上重现其三维(3D)微流体和结构复杂性仍然是一项重大挑战。为了克服这一障碍,我们在此报告一种混合增材制造——即“3D打印”——策略,其中“双光子直接激光写入(DLW)”用于在“液晶显示器(LCD)”3D打印的微流体芯片上直接纳米打印任意设计的微血管。制造结果表明,成功生产出了直径为100μm、壁厚为5μm的3D聚二甲基硅氧烷(PDMS)微流体血管,其具有预先设计的直径为5μm的微孔阵列,以及三个离散的螺旋状、相互缠绕的微血管。对MDA-MB-231上皮性乳腺癌细胞的实验结果表明,3D PDMS微血管具有支持细胞培养的能力。综合来看,这些结果表明,所提出的用于3D纳米打印具有定制设计架构和微孔率的PDMS微血管的策略,为实现用于广泛生物医学应用的新型“芯片上器官(OOC)”系统提供了一条有前景的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验