Suppr超能文献

从功能到结构的神经回路推断。

Neural Circuit Inference from Function to Structure.

机构信息

Harvard University, Cambridge, MA 02139, USA.

Harvard University, Cambridge, MA 02139, USA.

出版信息

Curr Biol. 2017 Jan 23;27(2):189-198. doi: 10.1016/j.cub.2016.11.040. Epub 2017 Jan 5.

Abstract

Advances in technology are opening new windows on the structural connectivity and functional dynamics of brain circuits. Quantitative frameworks are needed that integrate these data from anatomy and physiology. Here, we present a modeling approach that creates such a link. The goal is to infer the structure of a neural circuit from sparse neural recordings, using partial knowledge of its anatomy as a regularizing constraint. We recorded visual responses from the output neurons of the retina, the ganglion cells. We then generated a systematic sequence of circuit models that represents retinal neurons and connections and fitted them to the experimental data. The optimal models faithfully recapitulated the ganglion cell outputs. More importantly, they made predictions about dynamics and connectivity among unobserved neurons internal to the circuit, and these were subsequently confirmed by experiment. This circuit inference framework promises to facilitate the integration and understanding of big data in neuroscience.

摘要

技术的进步正在为大脑回路的结构连接和功能动态打开新的窗口。需要定量框架来整合来自解剖学和生理学的数据。在这里,我们提出了一种建模方法来建立这种联系。目标是从稀疏的神经记录中推断出神经回路的结构,将其解剖结构的部分知识作为正则化约束。我们记录了视网膜输出神经元(神经节细胞)的视觉反应。然后,我们生成了一个系统的电路模型序列,该序列代表视网膜神经元和连接,并将其拟合到实验数据中。最优模型忠实地再现了神经节细胞的输出。更重要的是,它们对电路内部未观察到的神经元之间的动态和连接做出了预测,这些预测随后通过实验得到了证实。这个电路推断框架有望促进神经科学中大数据的整合和理解。

相似文献

1
Neural Circuit Inference from Function to Structure.从功能到结构的神经回路推断。
Curr Biol. 2017 Jan 23;27(2):189-198. doi: 10.1016/j.cub.2016.11.040. Epub 2017 Jan 5.
2
Modeling the repetitive firing of retinal ganglion cells.视网膜神经节细胞重复放电的建模。
Brain Res. 1990 Mar 5;510(2):343-5. doi: 10.1016/0006-8993(90)91388-w.
6
Inferring hidden structure in multilayered neural circuits.推断多层神经回路中的隐藏结构。
PLoS Comput Biol. 2018 Aug 23;14(8):e1006291. doi: 10.1371/journal.pcbi.1006291. eCollection 2018 Aug.
8
Computing complex visual features with retinal spike times.利用视网膜尖峰时间计算复杂的视觉特征。
PLoS One. 2013;8(1):e53063. doi: 10.1371/journal.pone.0053063. Epub 2013 Jan 2.
10
A single retinal circuit model for multiple computations.用于多种计算的单一视网膜回路模型。
Biol Cybern. 2018 Oct;112(5):427-444. doi: 10.1007/s00422-018-0767-9. Epub 2018 Jun 27.

引用本文的文献

4
Retina organoids: Window into the biophysics of neuronal systems.视网膜类器官:洞察神经元系统生物物理学的窗口。
Biophys Rev (Melville). 2022 Jan 18;3(1):011302. doi: 10.1063/5.0077014. eCollection 2022 Mar.
5
Efficient coding of natural scenes improves neural system identification.自然场景的高效编码能改善神经系统辨识。
PLoS Comput Biol. 2023 Apr 24;19(4):e1011037. doi: 10.1371/journal.pcbi.1011037. eCollection 2023 Apr.
9
Feedback from retinal ganglion cells to the inner retina.视网膜神经节细胞向内视网膜的反馈。
PLoS One. 2021 Jul 22;16(7):e0254611. doi: 10.1371/journal.pone.0254611. eCollection 2021.

本文引用的文献

4
A mesoscale connectome of the mouse brain.小鼠大脑的介观连接组图谱
Nature. 2014 Apr 10;508(7495):207-14. doi: 10.1038/nature13186. Epub 2014 Apr 2.
8
Divergence of visual channels in the inner retina.内视网膜视觉通道的离散。
Nat Neurosci. 2012 Nov;15(11):1581-9. doi: 10.1038/nn.3241. Epub 2012 Oct 21.
9
The neuronal organization of the retina.视网膜的神经元组织。
Neuron. 2012 Oct 18;76(2):266-80. doi: 10.1016/j.neuron.2012.10.002. Epub 2012 Oct 17.
10
The spatial structure of a nonlinear receptive field.非线性感受野的空间结构。
Nat Neurosci. 2012 Nov;15(11):1572-80. doi: 10.1038/nn.3225. Epub 2012 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验