Suppr超能文献

利用脑电图和深度学习将认知负荷建模为自监督脑率

Modeling Cognitive Load as a Self-Supervised Brain Rate with Electroencephalography and Deep Learning.

作者信息

Longo Luca

机构信息

Artificial Intelligence and Cognitive Load Research Lab, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland.

Applied Intelligence Research Center, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland.

出版信息

Brain Sci. 2022 Oct 21;12(10):1416. doi: 10.3390/brainsci12101416.

Abstract

The principal reason for measuring mental workload is to quantify the cognitive cost of performing tasks to predict human performance. Unfortunately, a method for assessing mental workload that has general applicability does not exist yet. This is due to the abundance of intuitions and several operational definitions from various fields that disagree about the sources or workload, its attributes, the mechanisms to aggregate these into a general model and their impact on human performance. This research built upon these issues and presents a novel method for mental workload modelling from EEG data employing deep learning. This method is self-supervised, employing a continuous brain rate, an index of cognitive activation, and does not require human declarative knowledge. The aim is to induce models automatically from data, supporting replicability, generalisability and applicability across fields and contexts. This specific method is a convolutional recurrent neural network trainable with spatially preserving spectral topographic head-maps from EEG data, aimed at fitting a novel brain rate variable. Findings demonstrate the capacity of the convolutional layers to learn meaningful high-level representations from EEG data since within-subject models had, on average, a test Mean Absolute Percentage Error of around 11%. The addition of a Long-Short Term Memory layer for handling sequences of high-level representations was not significant, although it did improve their accuracy. These findings point to the existence of quasi-stable blocks of automatically learnt high-level representations of cognitive activation because they can be induced through convolution and seem not to be dependent on each other over time, intuitively matching the non-stationary nature of brain responses. Additionally, across-subject models, induced with data from an increasing number of participants, thus trained with data containing more variability, obtained a similar accuracy to the within-subject models. This highlights the potential generalisability of the induced high-level representations across people, suggesting the existence of subject-independent cognitive activation patterns. This research contributes to the body of knowledge by providing scholars with a novel computational method for mental workload modelling that aims to be generally applicable and does not rely on ad hoc human crafted models.

摘要

测量心理负荷的主要原因是量化执行任务的认知成本,以预测人类表现。不幸的是,目前还不存在一种具有普遍适用性的评估心理负荷的方法。这是因为存在大量来自不同领域的直觉和操作定义,它们在心理负荷的来源、其属性、将这些因素整合为一个通用模型的机制以及它们对人类表现的影响等方面存在分歧。本研究基于这些问题,提出了一种利用深度学习从脑电图(EEG)数据进行心理负荷建模的新方法。该方法是自监督的,采用连续脑率(一种认知激活指标),并且不需要人类陈述性知识。其目的是从数据中自动诱导模型,支持跨领域和情境的可重复性、通用性和适用性。这种特定方法是一种卷积循环神经网络,可通过EEG数据中空间保留的频谱地形图进行训练,旨在拟合一个新的脑率变量。研究结果表明,卷积层有能力从EEG数据中学习有意义的高级表征,因为受试者内模型平均测试平均绝对百分比误差约为11%。添加用于处理高级表征序列的长短期记忆层虽然确实提高了准确性,但并不显著。这些发现表明存在自动学习的认知激活高级表征的准稳定块,因为它们可以通过卷积诱导产生,并且随着时间推移似乎相互独立,直观上与大脑反应的非平稳性质相匹配。此外,跨受试者模型是用来自越来越多参与者的数据诱导产生的,因此是用包含更多变异性的数据进行训练的,其获得的准确性与受试者内模型相似。这突出了诱导的高级表征在人群中的潜在通用性,表明存在与个体无关的认知激活模式。本研究通过为学者提供一种用于心理负荷建模的新计算方法,为知识体系做出了贡献,该方法旨在具有普遍适用性,且不依赖于临时人工构建的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/405e/9599448/5f735b5ed015/brainsci-12-01416-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验