Suppr超能文献

干细胞代谢的动态网络建模

Dynamic Network Modeling of Stem Cell Metabolism.

作者信息

Shen Fangzhou, Cheek Camden, Chandrasekaran Sriram

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.

出版信息

Methods Mol Biol. 2019;1975:305-320. doi: 10.1007/978-1-4939-9224-9_14.

Abstract

Stem cell metabolism is intrinsically tied to stem cell pluripotency and function. Yet, understanding metabolic rewiring in stem cells has been challenging due to the complex and highly interconnected nature of the metabolic network. Genome-scale metabolic network models are increasingly used to holistically model the metabolic behavior of various cells and tissues using transcriptomics data. However, these powerful approaches that model steady-state behavior have limited utility for studying dynamic stem cell state transitions. To address this complexity, we recently developed the dynamic flux activity (DFA) approach; DFA is a genome-scale modeling approach that uses time-course metabolic data to predict metabolic flux rewiring. This protocol outlines the steps for modeling steady-state and dynamic metabolic behavior using transcriptomics and time-course metabolomics data, respectively. Using data from naive and primed pluripotent stem cells, we demonstrate how we can use genome-scale modeling and DFA to comprehensively characterize the metabolic differences between these states.

摘要

干细胞代谢与干细胞多能性及功能内在相关。然而,由于代谢网络的复杂性和高度互联性,理解干细胞中的代谢重编程一直具有挑战性。基因组规模代谢网络模型越来越多地被用于利用转录组学数据对各种细胞和组织的代谢行为进行整体建模。然而,这些模拟稳态行为的强大方法在研究动态干细胞状态转变方面的效用有限。为了解决这种复杂性,我们最近开发了动态通量活性(DFA)方法;DFA是一种基因组规模建模方法,它使用时间进程代谢数据来预测代谢通量重编程。本方案概述了分别使用转录组学和时间进程代谢组学数据对稳态和动态代谢行为进行建模的步骤。利用来自原始态和启动态多能干细胞的数据,我们展示了如何使用基因组规模建模和DFA来全面表征这些状态之间的代谢差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验