文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

铁氧化物磁性纳米颗粒的生物相容性和可降解性的新见解:体视学和体内 MRI 监测。

New Insight about Biocompatibility and Biodegradability of Iron Oxide Magnetic Nanoparticles: Stereological and In Vivo MRI Monitor.

机构信息

Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.

Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran.

出版信息

Sci Rep. 2019 May 9;9(1):7173. doi: 10.1038/s41598-019-43650-4.


DOI:10.1038/s41598-019-43650-4
PMID:31073222
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6509211/
Abstract

Iron oxide magnetic nanoparticles (IONPs) have attracted enormous attention because of their extensive medicinal and industrial applicability. PEGylated L-arginine modified iron oxide magnetic nanoparticles (PEG-Arg@IONPs) were synthesized and functioned in the present research as MRI contrast agents considered in vivo BALB/c model. The Synthesized PEG-Arg@IONPs were tracked in certain time intervals by MRI. The intensity of MR imaging of kidneys increased after administration of PEG-Arg@IONPs, which could confirm the emission of these nanoparticles by kidneys shortly after administration. Although PEG-Arg@IONPs were uptake by liver within 2 hours after injection, whereas, the signal change intensity of spleen, heart and kidneys confirmed that PEG-Arg@IONPs existed in other organs. The results illustrated that IONPs coated with PEGylated natural amino acid thin layers had a long circulation time and could be served as T contrast agents for diagnosis purpose. Notably, to the best of our knowledge, it was the first time the biocompatibility and biodegradability of IONPs was studied and evaluated by stereological and MRI technique.

摘要

氧化铁磁性纳米粒子(IONPs)由于其广泛的药用和工业适用性而引起了极大的关注。本研究中合成了聚乙二醇化精氨酸修饰的氧化铁磁性纳米粒子(PEG-Arg@IONPs),并将其作为体内 BALB/c 模型中的 MRI 对比剂。通过 MRI 在特定时间间隔跟踪合成的 PEG-Arg@IONPs。在给予 PEG-Arg@IONPs 后,肾脏的磁共振成像强度增加,这可以证实这些纳米粒子在给药后不久由肾脏排出。尽管 PEG-Arg@IONPs 在注射后 2 小时内被肝脏摄取,但脾脏、心脏和肾脏的信号变化强度证实 PEG-Arg@IONPs 存在于其他器官中。结果表明,用聚乙二醇化天然氨基酸薄层涂覆的 IONPs 具有较长的循环时间,可以用作诊断目的的 T 对比剂。值得注意的是,据我们所知,这是首次使用体视学和 MRI 技术研究和评估 IONPs 的生物相容性和生物降解性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/3400726b1027/41598_2019_43650_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/f470ef52a630/41598_2019_43650_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/40619fbe4253/41598_2019_43650_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/1c830736887f/41598_2019_43650_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/d52c7360dfcb/41598_2019_43650_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/7476061431e7/41598_2019_43650_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/21eb4dbd8026/41598_2019_43650_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/43422198a4b8/41598_2019_43650_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/ffb633189030/41598_2019_43650_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/702bd6bd9b09/41598_2019_43650_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/d51d599a3563/41598_2019_43650_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/3400726b1027/41598_2019_43650_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/f470ef52a630/41598_2019_43650_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/40619fbe4253/41598_2019_43650_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/1c830736887f/41598_2019_43650_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/d52c7360dfcb/41598_2019_43650_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/7476061431e7/41598_2019_43650_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/21eb4dbd8026/41598_2019_43650_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/43422198a4b8/41598_2019_43650_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/ffb633189030/41598_2019_43650_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/702bd6bd9b09/41598_2019_43650_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/d51d599a3563/41598_2019_43650_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705c/6509211/3400726b1027/41598_2019_43650_Fig11_HTML.jpg

相似文献

[1]
New Insight about Biocompatibility and Biodegradability of Iron Oxide Magnetic Nanoparticles: Stereological and In Vivo MRI Monitor.

Sci Rep. 2019-5-9

[2]
Tailor-made PEG coated iron oxide nanoparticles as contrast agents for long lasting magnetic resonance molecular imaging of solid cancers.

Mater Sci Eng C Mater Biol Appl. 2019-10-11

[3]
Synthesis Of PEG-Coated, Ultrasmall, Manganese-Doped Iron Oxide Nanoparticles With High Relaxivity For T/T Dual-Contrast Magnetic Resonance Imaging.

Int J Nanomedicine. 2019-10-24

[4]
One-pot facile synthesis of PEGylated superparamagnetic iron oxide nanoparticles for MRI contrast enhancement.

Mater Sci Eng C Mater Biol Appl. 2014-4-28

[5]
Block copolymer cross-linked nanoassemblies improve particle stability and biocompatibility of superparamagnetic iron oxide nanoparticles.

Pharm Res. 2012-10-19

[6]
Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging.

Nanoscale. 2015-2-7

[7]
In Vivo HER2-Targeted Magnetic Resonance Tumor Imaging Using Iron Oxide Nanoparticles Conjugated with Anti-HER2 Fragment Antibody.

Mol Imaging Biol. 2016-12

[8]
Toxicity and biodistribution assessment of curcumin-coated iron oxide nanoparticles: Multidose administration.

Life Sci. 2021-7-15

[9]
Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging.

Int J Nanomedicine. 2017-7-24

[10]
Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI.

Chem Soc Rev. 2015-10-7

引用本文的文献

[1]
Dual conjugation of magnetic nanoparticles with antibodies and siRNA for cell-specific gene silencing in vascular cells.

Front Drug Deliv. 2024-8-15

[2]
Principles and applications of magnetic nanomaterials in magnetically guided bioimaging.

Mater Today Phys. 2023-3

[3]
Iron oxide based magnetic nanoparticles for hyperthermia, MRI and drug delivery applications: a review.

RSC Adv. 2025-4-14

[4]
Chemical Conjugation of Iron Oxide Nanoparticles for the Development of Magnetically Directable Silk Particles.

ACS Appl Mater Interfaces. 2025-2-12

[5]
Comprehensive Analysis of the Potential Toxicity of Magnetic Iron Oxide Nanoparticles for Medical Applications: Cellular Mechanisms and Systemic Effects.

Int J Mol Sci. 2024-11-8

[6]
Synthesis and characterization of a magnetic bacterial cellulose-chitosan nanocomposite and evaluation of its applicability for osteogenesis.

Bioimpacts. 2024

[7]
Ultrasmall Mn-doped iron oxide nanoparticles with dual hepatobiliary and renal clearances for MR liver imaging.

Nanoscale Adv. 2024-3-13

[8]
Advances in superparamagnetic iron oxide nanoparticles modified with branched polyethyleneimine for multimodal imaging.

Front Bioeng Biotechnol. 2024-1-25

[9]
Recent trends in preparation and biomedical applications of iron oxide nanoparticles.

J Nanobiotechnology. 2024-1-8

[10]
Modulating cell signalling in vivo with magnetic nanotransducers.

Nat Rev Methods Primers. 2022

本文引用的文献

[1]
Biocompatible composite nanoparticles with large longitudinal relaxivity for targeted imaging and early diagnosis of cancer.

J Mater Chem B. 2013-7-21

[2]
Self-controlled release of Oxaliplatin prodrug from d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) functionalized mesoporous silica nanoparticles for cancer therapy.

J Colloid Interface Sci. 2018-4-16

[3]
A multifunctional nanoplatform for cancer chemo-photothermal synergistic therapy and overcoming multidrug resistance.

Biomater Sci. 2018-5-1

[4]
Dynamically PEGylated and Borate-Coordination-Polymer-Coated Polydopamine Nanoparticles for Synergetic Tumor-Targeted, Chemo-Photothermal Combination Therapy.

Small. 2018-2-12

[5]
Polyplex Micelle with pH-Responsive PEG Detachment and Functional Tetraphenylene Incorporation to Promote Systemic Gene Expression.

Bioconjug Chem. 2017-11-15

[6]
Bioinspired "Active" Stealth Magneto-Nanomicelles for Theranostics Combining Efficient MRI and Enhanced Drug Delivery.

ACS Appl Mater Interfaces. 2017-8-30

[7]
Co-delivery of docetaxel and bortezomib based on a targeting nanoplatform for enhancing cancer chemotherapy effects.

Drug Deliv. 2017-11

[8]
pH-Sensitive Delivery Vehicle Based on Folic Acid-Conjugated Polydopamine-Modified Mesoporous Silica Nanoparticles for Targeted Cancer Therapy.

ACS Appl Mater Interfaces. 2017-5-22

[9]
Dual-Targeted Multifunctional Nanoparticles for Magnetic Resonance Imaging Guided Cancer Diagnosis and Therapy.

ACS Appl Mater Interfaces. 2017-3-10

[10]
Acidic pH-Triggered Drug-Eluting Nanocomposites for Magnetic Resonance Imaging-Monitored Intra-arterial Drug Delivery to Hepatocellular Carcinoma.

ACS Appl Mater Interfaces. 2016-5-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索