Suppr超能文献

评估知觉学习中知觉敏感性变化的详细时间进程。

Assessing the detailed time course of perceptual sensitivity change in perceptual learning.

作者信息

Zhang Pan, Zhao Yukai, Dosher Barbara Anne, Lu Zhong-Lin

机构信息

Laboratory of Brain Processes (LOBES), Departments of Psychology, The Ohio State University, Columbus, OH, USA.

Department of Cognitive Sciences and Institute of Mathematical Behavioral Sciences, University of California, Irvine, CA, USA.

出版信息

J Vis. 2019 May 1;19(5):9. doi: 10.1167/19.5.9.

Abstract

The learning curve in perceptual learning is typically sampled in blocks of trials, which could result in imprecise and possibly biased estimates, especially when learning is rapid. Recently, Zhao, Lesmes, and Lu (2017, 2019) developed a Bayesian adaptive quick Change Detection (qCD) method to accurately, precisely, and efficiently assess the time course of perceptual sensitivity change. In this study, we implemented and tested the qCD method in assessing the learning curve in a four-alternative forced-choice global motion direction identification task in both simulations and a psychophysical experiment. The stimulus intensity in each trial was determined by the qCD, staircase or random stimulus selection (RSS) methods. Simulations showed that the accuracy (bias) and precision (standard deviation or confidence bounds) of the estimated learning curves from the qCD were much better than those obtained by the staircase and RSS method; this is true for both trial-by-trial and post hoc segment-by-segment qCD analyses. In the psychophysical experiment, the average half widths of the 68.2% credible interval of the estimated thresholds from the trial-by-trial and post hoc segment-by-segment qCD analyses were both quite small. Additionally, the overall estimates from the qCD and staircase methods matched extremely well in this task where the behavioral rate of learning is relatively slow. Our results suggest that the qCD method can precisely and accurately assess the trial-by-trial time course of perceptual learning.

摘要

感知学习中的学习曲线通常是在试验块中进行采样的,这可能会导致估计不准确甚至有偏差,尤其是在学习速度较快时。最近,赵、莱斯梅斯和卢(2017年、2019年)开发了一种贝叶斯自适应快速变化检测(qCD)方法,以准确、精确且高效地评估感知灵敏度变化的时间进程。在本研究中,我们在模拟和心理物理学实验中实施并测试了qCD方法,以评估四择一强制选择全局运动方向识别任务中的学习曲线。每个试验中的刺激强度由qCD、阶梯法或随机刺激选择(RSS)方法确定。模拟结果表明,qCD估计的学习曲线的准确性(偏差)和精度(标准差或置信区间)比阶梯法和RSS方法要好得多;逐次试验和事后逐段qCD分析均是如此。在心理物理学实验中,逐次试验和事后逐段qCD分析估计阈值的68.2%可信区间的平均半宽都相当小。此外,在这个行为学习速度相对较慢的任务中,qCD方法和阶梯法的总体估计结果非常吻合。我们的结果表明,qCD方法可以精确且准确地评估感知学习的逐次试验时间进程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3471/6510278/9e70604a7283/i1534-7362-19-5-9-f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验