Suppr超能文献

利用大数据和国家数据库进行肉瘤研究的机遇和局限性。

The opportunities and shortcomings of using big data and national databases for sarcoma research.

机构信息

Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.

Department of Emergency Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.

出版信息

Cancer. 2019 Sep 1;125(17):2926-2934. doi: 10.1002/cncr.32118. Epub 2019 May 15.

Abstract

The rarity and heterogeneity of sarcomas make performing appropriately powered studies challenging and magnify the significance of large databases in sarcoma research. Established large tumor registries and population-based databases have become increasingly relevant for answering clinical questions regarding sarcoma incidence, treatment patterns, and outcomes. However, the validity of large databases has been questioned and scrutinized because of the inaccuracy and wide variability of coding practices and the absence of clinically relevant variables. In addition, the utilization of large databases for the study of rare cancers such as sarcoma may be particularly challenging because of the known limitations of administrative data and poor overall data quality. Currently, there are several large national cancer databases, including the Surveillance, Epidemiology, and End Results database, the National Cancer Data Base of the American College of Surgeons and the American Cancer Society, and the National Program of Cancer Registries of the Centers for Disease Control and Prevention. These databases are often used for sarcoma research, but they are limited by their dependence on administrative or billing data, the lack of agreement between chart abstractors on diagnosis codes, and the use of preexisting documented hospital diagnosis codes for tumor registries, which lead to a significant underestimation of sarcomas in large data sets. Current and future initiatives to improve databases and big data applications for sarcoma research include increasing the utilization of sarcoma-specific registries and encouraging national initiatives to expand on real-world, evidence-based data sets.

摘要

肉瘤的罕见性和异质性使得进行适当有力的研究具有挑战性,并凸显了大型数据库在肉瘤研究中的重要性。已建立的大型肿瘤登记处和基于人群的数据库对于回答有关肉瘤发病率、治疗模式和结果的临床问题变得越来越重要。然而,由于编码实践的不准确和广泛变化以及缺乏临床相关变量,大型数据库的有效性受到了质疑和审查。此外,由于行政数据的已知局限性和整体数据质量较差,利用大型数据库研究肉瘤等罕见癌症可能特别具有挑战性。目前,有几个大型国家癌症数据库,包括监测、流行病学和最终结果数据库、美国外科医师学院和美国癌症协会的国家癌症数据库以及疾病预防控制中心的国家癌症登记处计划。这些数据库常用于肉瘤研究,但它们受到行政或计费数据的依赖、图表摘要者对诊断代码缺乏一致性以及肿瘤登记处使用预先存在的有文件证明的医院诊断代码的限制,这导致在大型数据集中国肉瘤的严重低估。当前和未来旨在改善数据库和肉瘤研究大数据应用的举措包括增加肉瘤特异性登记处的利用,并鼓励国家举措扩大真实世界的循证数据集。

相似文献

1
The opportunities and shortcomings of using big data and national databases for sarcoma research.
Cancer. 2019 Sep 1;125(17):2926-2934. doi: 10.1002/cncr.32118. Epub 2019 May 15.
2
Is the Number of National Database Research Studies in Musculoskeletal Sarcoma Increasing, and Are These Studies Reliable?
Clin Orthop Relat Res. 2023 Mar 1;481(3):491-508. doi: 10.1097/CORR.0000000000002282. Epub 2022 Jun 21.
3
United States Administrative Databases and Cancer Registries for Thoracic Surgery Health Services Research.
Ann Thorac Surg. 2020 Mar;109(3):636-644. doi: 10.1016/j.athoracsur.2019.08.067. Epub 2019 Sep 30.
4
The National Cancer Data Base report on patterns of childhood cancers in the United States.
Cancer. 1997 Dec 15;80(12):2321-32. doi: 10.1002/(sici)1097-0142(19971215)80:12<2321::aid-cncr14>3.0.co;2-w.
5
Primary Central Nervous System Tumors: Comparing Two National Cancer Registries.
World Neurosurg. 2019 Aug;128:e719-e731. doi: 10.1016/j.wneu.2019.04.247. Epub 2019 May 8.
6
Changing rates of cancer. The hazards of using a single definition.
J Clin Epidemiol. 2001 Mar;54(3):225-31. doi: 10.1016/s0895-4356(00)00306-1.
8
Studying a Rare Disease Using Multi-Institutional Research Collaborations vs Big Data: Where Lies the Truth?
J Am Coll Surg. 2018 Sep;227(3):357-366.e3. doi: 10.1016/j.jamcollsurg.2018.05.009. Epub 2018 Jun 12.
9
The National Cancer Database Conforms to the Standardized Framework for Registry and Data Quality.
Ann Surg Oncol. 2024 Sep;31(9):5546-5559. doi: 10.1245/s10434-024-15393-8. Epub 2024 May 8.

引用本文的文献

1
Epidemiology and survival outcomes for liposarcoma patients in England: An observational cohort study using real world data.
Rare Tumors. 2025 Jul 26;17:20363613251346621. doi: 10.1177/20363613251346621. eCollection 2025.
2
A comparison of organ preservation in older adults with stage I rectal cancer.
Int J Colorectal Dis. 2025 Jul 1;40(1):148. doi: 10.1007/s00384-025-04940-8.
4
Association between congenital uterine anomalies and placenta accreta spectrum.
F S Rep. 2025 Jan 16;6(1):67-72. doi: 10.1016/j.xfre.2025.01.006. eCollection 2025 Mar.
5
Adjuvant Chemotherapy for High-Risk Stage II Colon Cancer: A Population-Based Study.
J Gastrointest Cancer. 2025 Feb 13;56(1):63. doi: 10.1007/s12029-025-01186-z.
8
De Novo Natural Language Processing Algorithm Accurately Identifies Myxofibrosarcoma From Pathology Reports.
Clin Orthop Relat Res. 2025 Jan 1;483(1):80-87. doi: 10.1097/CORR.0000000000003270. Epub 2024 Oct 2.
10
Sarcoma_CellminerCDB: A tool to interrogate the genomic and functional characteristics of a comprehensive collection of sarcoma cell lines.
iScience. 2024 Apr 18;27(6):109781. doi: 10.1016/j.isci.2024.109781. eCollection 2024 Jun 21.

本文引用的文献

1
Assessment of the Accuracy of Disease Coding Among Patients Diagnosed With Sarcoma.
JAMA Oncol. 2018 Sep 1;4(9):1293-1295. doi: 10.1001/jamaoncol.2018.2979.
2
Minimally Invasive Surgery for Retroperitoneal Sarcoma: Just Because We Can Does Not Mean We Should.
Ann Surg Oncol. 2018 Aug;25(8):2129-2131. doi: 10.1245/s10434-018-6572-9. Epub 2018 Jun 14.
3
The Value of Clinical Colorectal Cancer Registries in Colorectal Cancer Research: A Systematic Review.
JAMA Surg. 2018 Sep 1;153(9):841-849. doi: 10.1001/jamasurg.2018.1635.
4
Studying a Rare Disease Using Multi-Institutional Research Collaborations vs Big Data: Where Lies the Truth?
J Am Coll Surg. 2018 Sep;227(3):357-366.e3. doi: 10.1016/j.jamcollsurg.2018.05.009. Epub 2018 Jun 12.
5
Development and Validation of a High-Quality Composite Real-World Mortality Endpoint.
Health Serv Res. 2018 Dec;53(6):4460-4476. doi: 10.1111/1475-6773.12872. Epub 2018 May 14.
6
Real-World Evidence In Support Of Precision Medicine: Clinico-Genomic Cancer Data As A Case Study.
Health Aff (Millwood). 2018 May;37(5):765-772. doi: 10.1377/hlthaff.2017.1579.
7
Practical Guide to Surgical Data Sets: National Cancer Database (NCDB).
JAMA Surg. 2018 Sep 1;153(9):850-851. doi: 10.1001/jamasurg.2018.0492.
8
A Checklist to Elevate the Science of Surgical Database Research.
JAMA Surg. 2018 Jun 1;153(6):505-507. doi: 10.1001/jamasurg.2018.0628.
9
Publication trend, resource utilization, and impact of the US National Cancer Database: A systematic review.
Medicine (Baltimore). 2018 Mar;97(9):e9823. doi: 10.1097/MD.0000000000009823.
10
Carcinoembryonic Antigen-Still More to Learn From the Real World.
JAMA Oncol. 2018 Mar 1;4(3):315-316. doi: 10.1001/jamaoncol.2017.4408.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验