Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
Traffic. 2019 Aug;20(8):571-582. doi: 10.1111/tra.12656. Epub 2019 Jun 17.
Secretory proteins are of particular importance to apicomplexan parasites and comprise over 15% of the genomes of the human pathogens that cause diseases like malaria, toxoplasmosis and babesiosis as well as other diseases of agricultural significance. Here, we developed an approach that allows us to control the trafficking destination of secretory proteins in the human malaria parasite Plasmodium falciparum. Based on the unique structural requirements of apicoplast transit peptides, we designed three conditional localization domains (CLD1, 2 and 3) that can be used to control protein trafficking via the addition of a cell permeant ligand. Studies comparing the trafficking dynamics of each CLD show that CLD2 has the most optimal trafficking efficiency. To validate this system, we tested whether CLD2 could conditionally localize a biotin ligase called holocarboxylase synthetase 1 (HCS1) without interfering with the function of the enzyme. In a parasite line expressing CLD2-HCS1, we were able to control protein biotinylation in the apicoplast in a ligand-dependent manner, demonstrating the full functionality of the CLD tool. We have developed and validated a novel molecular tool that may be used in future studies to help elucidate the function of secretory proteins in malaria parasites.
分泌蛋白对顶复门寄生虫特别重要,占引起疟疾、弓形体病和巴贝斯虫病等人类病原体以及其他农业相关疾病的基因组的 15%以上。在这里,我们开发了一种方法,可以控制人类疟原虫 Plasmodium falciparum 中分泌蛋白的运输目的地。基于质体转运肽的独特结构要求,我们设计了三个条件定位结构域 (CLD1、2 和 3),可以通过添加细胞渗透性配体来控制蛋白质的运输。比较每个 CLD 的运输动力学的研究表明,CLD2 具有最佳的运输效率。为了验证该系统,我们测试了 CLD2 是否可以在不干扰酶功能的情况下条件性地将一种称为全羧化酶合成酶 1 (HCS1) 的生物素连接酶定位到质体中。在表达 CLD2-HCS1 的寄生虫系中,我们能够以配体依赖的方式控制质体中的蛋白质生物素化,证明了 CLD 工具的完全功能性。我们已经开发并验证了一种新型分子工具,可用于未来的研究,以帮助阐明分泌蛋白在疟原虫中的功能。