School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
Sensors (Basel). 2022 Jul 14;22(14):5271. doi: 10.3390/s22145271.
Recent studies have raised concerns regarding racial and gender disparity in facial attribute classification performance. As these attributes are directly and indirectly correlated with the sensitive attribute in a complex manner, simple disparate treatment is ineffective in reducing performance disparity. This paper focuses on achieving counterfactual fairness for facial attribute classification. Each labeled input image is used to generate two synthetic replicas: one under factual assumptions about the sensitive attribute and one under counterfactual. The proposed causal graph-based attribute translation generates realistic counterfactual images that consider the complicated causal relationship among the attributes with an encoder-decoder framework. A causal graph represents complex relationships among the attributes and is used to sample factual and counterfactual facial attributes of the given face image. The encoder-decoder architecture translates the given facial image to have sampled factual or counterfactual attributes while preserving its identity. The attribute classifier is trained for fair prediction with counterfactual regularization between factual and corresponding counterfactual translated images. Extensive experimental results on the CelebA dataset demonstrate the effectiveness and interpretability of the proposed learning method for classifying multiple face attributes.
最近的研究引起了人们对面部属性分类性能中的种族和性别差异的关注。由于这些属性与敏感属性以复杂的方式直接和间接相关,因此简单的差异处理并不能有效减少性能差异。本文专注于实现面部属性分类的反事实公平性。每个标记的输入图像都用于生成两个合成副本:一个基于对敏感属性的事实假设,另一个基于反事实假设。基于因果图的属性转换使用编码器-解码器框架生成考虑到属性之间复杂因果关系的逼真反事实图像。因果图表示属性之间的复杂关系,并用于对给定人脸图像的实际和反事实面部属性进行采样。编码器-解码器架构将给定的人脸图像转换为具有采样的实际或反事实属性,同时保留其身份。使用反事实正则化在实际和相应的反事实翻译图像之间对属性分类器进行公平预测训练。在 CelebA 数据集上的广泛实验结果证明了所提出的学习方法在分类多个面部属性方面的有效性和可解释性。