IEEE Trans Cybern. 2021 Jul;51(7):3496-3509. doi: 10.1109/TCYB.2019.2914316. Epub 2021 Jun 23.
Subspace learning for tensors attracts increasing interest in recent years, leading to the development of multilinear extensions of principal component analysis (PCA) and probabilistic PCA (PPCA). Existing multilinear PPCAs are based on the Tucker or CANDECOMP/PARAFAC (CP) models. Although both kinds of multilinear PPCAs have shown their effectiveness in dealing with tensors, they also have their own limitations. Tucker-based multilinear PPCAs have a restrictive subspace representation and suffer from rotational ambiguity, while CP-based ones are more prone to overfitting. To address these problems, we propose probabilistic rank-one tensor analysis (PROTA), a CP-based multilinear PPCA. PROTA has a more flexible subspace representation than Tucker-based PPCAs, and avoids rotational ambiguity. To alleviate overfitting for CP-based PPCAs, we propose two simple and effective regularization strategies, named as concurrent regularizations (CRs). By adjusting the noise variance or the moments of latent features, our strategies concurrently and coherently penalize the entire subspace. This relaxes unnecessary scale restrictions and gains more flexibility in regularizing CP-based PPCAs. To take full advantage of the probabilistic framework, we further propose a Bayesian treatment of PROTA, which achieves both automatic feature determination and robustness against overfitting. Experiments on synthetic and real-world datasets demonstrate the superiority of PROTA in subspace estimation and classification, as well as the effectiveness of CRs in alleviating overfitting.
张量的子空间学习近年来引起了越来越多的关注,导致了主成分分析(PCA)和概率主成分分析(PPCA)的多线性扩展的发展。现有的多线性 PPCAs 基于 Tucker 或 CANDECOMP/PARAFAC(CP)模型。虽然这两种多线性 PPCAs 在处理张量方面都表现出了有效性,但它们也有自己的局限性。基于 Tucker 的多线性 PPCAs 具有限制的子空间表示,并且受到旋转模糊的影响,而基于 CP 的则更容易出现过拟合。为了解决这些问题,我们提出了基于 CP 的概率一阶张量分析(PROTA),这是一种多线性 PPCA。PROTA 具有比基于 Tucker 的 PPCAs 更灵活的子空间表示,并且避免了旋转模糊。为了缓解基于 CP 的 PPCAs 的过拟合问题,我们提出了两种简单而有效的正则化策略,称为并发正则化(CRs)。通过调整噪声方差或潜在特征的矩,我们的策略同时且一致地惩罚整个子空间。这放宽了不必要的尺度限制,并在正则化基于 CP 的 PPCAs 方面获得了更多的灵活性。为了充分利用概率框架,我们进一步提出了 PROTA 的贝叶斯处理,它实现了自动特征确定和对过拟合的鲁棒性。在合成和真实数据集上的实验表明了 PROTA 在子空间估计和分类方面的优越性,以及 CRs 在缓解过拟合方面的有效性。