Liu Ruicun, Liu Tuoyu, Dan Tingting, Yang Shan, Li Yanbing, Luo Boyu, Zhuang Yingtan, Fan Xinyue, Zhang Xianchao, Cai Hongmin, Teng Yue
State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
School of Computer Science and Engineering, South China University of Technology, Guangzhou 510600, China.
Patterns (N Y). 2023 Aug 3;4(9):100806. doi: 10.1016/j.patter.2023.100806. eCollection 2023 Sep 8.
Malaria is a significant public health concern, with ∼95% of cases occurring in Africa, but accurate and timely diagnosis is problematic in remote and low-income areas. Here, we developed an artificial intelligence-based object detection system for malaria diagnosis (AIDMAN). In this system, the YOLOv5 model is used to detect cells in a thin blood smear. An attentional aligner model (AAM) is then applied for cellular classification that consists of multi-scale features, a local context aligner, and multi-scale attention. Finally, a convolutional neural network classifier is applied for diagnosis using blood-smear images, reducing interference caused by false positive cells. The results demonstrate that AIDMAN handles interference well, with a diagnostic accuracy of 98.62% for cells and 97% for blood-smear images. The prospective clinical validation accuracy of 98.44% is comparable to that of microscopists. AIDMAN shows clinically acceptable detection of malaria parasites and could aid malaria diagnosis, especially in areas lacking experienced parasitologists and equipment.
疟疾是一个重大的公共卫生问题,约95%的病例发生在非洲,但在偏远和低收入地区,准确及时的诊断存在问题。在此,我们开发了一种基于人工智能的疟疾诊断目标检测系统(AIDMAN)。在该系统中,YOLOv5模型用于检测薄血涂片上的细胞。然后应用注意力对齐模型(AAM)进行细胞分类,该模型由多尺度特征、局部上下文对齐器和多尺度注意力组成。最后,使用卷积神经网络分类器对血涂片图像进行诊断,减少假阳性细胞造成的干扰。结果表明,AIDMAN能很好地处理干扰,对细胞的诊断准确率为98.62%,对血涂片图像的诊断准确率为97%。98.44%的前瞻性临床验证准确率与显微镜检查人员相当。AIDMAN对疟原虫的检测在临床上是可接受的,有助于疟疾诊断,特别是在缺乏经验丰富的寄生虫学家和设备的地区。