Suppr超能文献

-值:一种使用声发射传感评估膝关节健康状况的潜在生物标志物。

-Value: A Potential Biomarker for Assessing Knee-Joint Health Using Acoustical Emission Sensing.

作者信息

Jeong Hyeon Ki, Whittingslow Daniel, Inan Omer T

机构信息

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30308, USA.

School of Medicine, Emory University, Atlanta, GA, 30318, USA.

出版信息

IEEE Sens Lett. 2018 Dec;2(4). doi: 10.1109/LSENS.2018.2871981. Epub 2018 Sep 24.

Abstract

This paper explores the novel application of an automated -value extraction algorithm for the interpretation of sounds produced by the knee joint during movement. Acoustical emissions were recorded from a total of eight subjects with acute knee injuries a first time, within one week of the injury, then a second time, four to six months following corrective surgery and rehabilitation. The data were collected from each subject using miniature electret microphones placed on the medial and lateral side of the patella during knee flexion and extension exercises. From the acoustical signals measured from each subject, we computed the -value using the modified Gutenberg-Ritcher equation which is widely used in seismology. The -value increased for each subject's injured knee from immediately following the injury to several months post recovery. (mean -value: 1.46 ± 0.35 [injured] and 1.92 ± 0.21 [post-surgery and recovery], p < 0.01). In addition, we compared this analysis technique against an unsupervised machine learning algorithm from our previous work and found that the -value metric can be as effective to differentiate changes in the joint sounds as our prior approach while requiring less computational time and complexity - both of which are preferable for future integration of this technology into a wearable system.

摘要

本文探讨了一种自动值提取算法在解释膝关节运动时产生的声音方面的新应用。对总共八名急性膝关节损伤患者进行了声学发射记录,第一次记录是在受伤后一周内,第二次记录是在矫正手术和康复后的四至六个月。在膝关节屈伸运动期间,使用放置在髌骨内侧和外侧的微型驻极体麦克风从每个受试者收集数据。根据从每个受试者测量的声学信号,我们使用地震学中广泛使用的修正古登堡-里希特方程计算值。从受伤后立即到恢复后的几个月,每个受试者受伤膝关节的值都有所增加。(平均值:1.46±0.35[受伤时]和1.92±0.21[手术后及恢复后],p<0.01)。此外,我们将这种分析技术与我们之前工作中的一种无监督机器学习算法进行了比较,发现值指标在区分关节声音变化方面与我们之前的方法一样有效,同时所需的计算时间和复杂度更低——这两者对于该技术未来集成到可穿戴系统中都是更可取的。

相似文献

10
Wearable knee health system employing novel physiological biomarkers.采用新型生理生物标志物的可穿戴膝关节健康系统。
J Appl Physiol (1985). 2018 Mar 1;124(3):537-547. doi: 10.1152/japplphysiol.00366.2017. Epub 2017 Jul 27.

本文引用的文献

5
Using Effect Size-or Why the P Value Is Not Enough.使用效应量——为何P值并不足够。
J Grad Med Educ. 2012 Sep;4(3):279-82. doi: 10.4300/JGME-D-12-00156.1.
6
Diagnosis of osteoarthritis: imaging.骨关节炎的诊断:影像学检查。
Bone. 2012 Aug;51(2):278-88. doi: 10.1016/j.bone.2011.11.019. Epub 2011 Dec 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验