Suppr超能文献

基于卷积神经网络和迁移学习的高分辨率磁化率图中脑结构自动分割

Automated Segmentation of Midbrain Structures in High-Resolution Susceptibility Maps Based on Convolutional Neural Network and Transfer Learning.

作者信息

Zhao Weiwei, Wang Yida, Zhou Fangfang, Li Gaiying, Wang Zhichao, Zhong Haodong, Song Yang, Gillen Kelly M, Wang Yi, Yang Guang, Li Jianqi

机构信息

Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China.

Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States.

出版信息

Front Neurosci. 2022 Feb 10;16:801618. doi: 10.3389/fnins.2022.801618. eCollection 2022.

Abstract

BACKGROUND

Accurate delineation of the midbrain nuclei, the red nucleus (RN), substantia nigra (SN) and subthalamic nucleus (STN), is important in neuroimaging studies of neurodegenerative and other diseases. This study aims to segment midbrain structures in high-resolution susceptibility maps using a method based on a convolutional neural network (CNN).

METHODS

The susceptibility maps of 75 subjects were acquired with a voxel size of 0.83 × 0.83 × 0.80 mm on a 3T MRI system to distinguish the RN, SN, and STN. A deeply supervised attention U-net was pre-trained with a dataset of 100 subjects containing susceptibility maps with a voxel size of 0.63 × 0.63 × 2.00 mm to provide initial weights for the target network. Five-fold cross-validation over the training cohort was used for all the models' training and selection. The same test cohort was used for the final evaluation of all the models. Dice coefficients were used to assess spatial overlap agreement between manual delineations (ground truth) and automated segmentation. Volume and magnetic susceptibility values in the nuclei extracted with automated CNN delineation were compared to those extracted by manual tracing. Consistencies of volume and magnetic susceptibility values by different extraction strategies were assessed by Pearson correlation coefficients and Bland-Altman analyses.

RESULTS

The automated CNN segmentation method achieved mean Dice scores of 0.903, 0.864, and 0.777 for the RN, SN, and STN, respectively. There were no significant differences between the achieved Dice scores and the inter-rater Dice scores ( > 0.05 for each nucleus). The overall volume and magnetic susceptibility values of the nuclei extracted by the automatic CNN method were significantly correlated with those by manual delineation ( < 0.01).

CONCLUSION

Midbrain structures can be precisely segmented in high-resolution susceptibility maps using a CNN-based method.

摘要

背景

准确描绘中脑核团,即红核(RN)、黑质(SN)和丘脑底核(STN),在神经退行性疾病及其他疾病的神经影像学研究中具有重要意义。本研究旨在使用基于卷积神经网络(CNN)的方法在高分辨率磁化率图中分割中脑结构。

方法

在3T磁共振成像(MRI)系统上获取了75名受试者的磁化率图,体素大小为0.83×0.83×0.80 mm,以区分红核、黑质和丘脑底核。使用包含体素大小为0.63×0.63×2.00 mm的磁化率图的100名受试者的数据集对深度监督注意力U型网络进行预训练,为目标网络提供初始权重。对训练队列进行五折交叉验证,用于所有模型的训练和选择。相同的测试队列用于所有模型的最终评估。使用Dice系数评估手动描绘(真实值)与自动分割之间的空间重叠一致性。将通过自动CNN描绘提取的核团中的体积和磁化率值与通过手动追踪提取的值进行比较。通过Pearson相关系数和Bland-Altman分析评估不同提取策略下体积和磁化率值的一致性。

结果

自动CNN分割方法对红核、黑质和丘脑底核的平均Dice分数分别为0.903、0.864和0.777。所获得的Dice分数与评分者间Dice分数之间无显著差异(每个核团均>0.05)。自动CNN方法提取的核团的总体积和磁化率值与手动描绘的结果显著相关(<0.01)。

结论

使用基于CNN的方法可在高分辨率磁化率图中精确分割中脑结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0379/8866960/f3cd6cfedc5e/fnins-16-801618-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验