Debs Noëlie, Rasti Pejman, Victor Léon, Cho Tae-Hee, Frindel Carole, Rousseau David
CREATIS, CNRS UMR-5220, INSERM U1206, Université Lyon 1, INSA Lyon Bât, Blaise Pascal, 7 Avenue Jean Capelle, 69621, Villeurbanne, France.
Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), UMR INRA IRHS, Université d'Angers, 62 Avenue Notre Dame du Lac, 49000 Angers, France.
Comput Biol Med. 2020 Jan;116:103579. doi: 10.1016/j.compbiomed.2019.103579. Epub 2019 Dec 18.
The problem of final tissue outcome prediction of acute ischemic stroke is assessed from physically realistic simulated perfusion magnetic resonance images. Different types of simulations with a focus on the arterial input function are discussed. These simulated perfusion magnetic resonance images are fed to convolutional neural network to predict real patients. Performances close to the state-of-the-art performances are obtained with a patient specific approach. This approach consists in training a model only from simulated images tuned to the arterial input function of a tested real patient. This demonstrates the added value of physically realistic simulated images to predict the final infarct from perfusion.
从物理逼真的模拟灌注磁共振图像评估急性缺血性中风最终组织结果预测的问题。讨论了以动脉输入函数为重点的不同类型模拟。将这些模拟灌注磁共振图像输入卷积神经网络以预测真实患者。通过患者特异性方法获得了接近当前最佳性能的表现。该方法包括仅从根据测试真实患者的动脉输入函数调整的模拟图像训练模型。这证明了物理逼真的模拟图像在从灌注预测最终梗死方面的附加价值。