Suppr超能文献

基于人群的贝叶斯正则化用于具有 NODDIDA 的微观结构扩散 MRI。

Population-based Bayesian regularization for microstructural diffusion MRI with NODDIDA.

机构信息

Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, United Kingdom.

Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.

出版信息

Magn Reson Med. 2019 Oct;82(4):1553-1565. doi: 10.1002/mrm.27831. Epub 2019 May 26.

Abstract

PURPOSE

Information on the brain microstructure can be probed by Diffusion Magnetic Resonance Imaging (dMRI). Neurite Orientation Dispersion and Density Imaging with Diffusivities Assessment (NODDIDA) is one of the simplest microstructural model proposed. However, the estimation of the NODDIDA parameters from clinically plausible dMRI acquisition is ill-posed, and different parameter sets can describe the same measurements equally well. A few approaches to resolve this problem focused on developing better optimization strategies for this non-convex optimization. However, this fundamentally does not resolve ill-posedness. This article introduces a Bayesian estimation framework, which is regularized through knowledge from an extensive dMRI measurement set on a population of healthy adults (henceforth population-based prior).

METHODS

We reformulate the problem as a Bayesian maximum a posteriori estimation, which includes as a special case previous approach using non-informative uniform priors. A population-based prior is estimated from 35 subjects of the MGH Adult Diffusion data (Human Connectome Project), acquired with an extensive acquisition protocol including high b-values. The accuracy and robustness of different approaches with and without the population-based prior is tested on subsets of the MGH dataset, and an independent dataset from a clinically comparable scanner, with only clinically plausible dMRI measurements.

RESULTS

The population-based prior produced substantially more accurate and robust parameter estimates, compared to the conventional uniform priors, for clinically feasible protocols, without introducing any evident bias.

CONCLUSIONS

The use of the proposed Bayesian population-based prior can lead to clinically feasible and robust estimation of NODDIDA parameters without changing the acquisition protocol.

摘要

目的

弥散磁共振成像(dMRI)可以探测脑微观结构的信息。神经丝取向弥散和密度成像与扩散度评估(NODDIDA)是提出的最简单的微观结构模型之一。然而,从临床上合理的 dMRI 采集来估计 NODDIDA 参数是不适定的,并且不同的参数集可以同样好地描述相同的测量结果。有几种方法可以解决这个问题,这些方法都集中在为这个非凸优化开发更好的优化策略上。然而,这并不能从根本上解决不适定性。本文介绍了一种贝叶斯估计框架,该框架通过对大量健康成年人(下文称为基于人群的先验)的弥散磁共振测量数据集的知识进行正则化。

方法

我们将问题重新表述为贝叶斯最大后验估计,其中包括以前使用非信息均匀先验的特殊情况。从 35 名 MGH 成人弥散数据(人类连接组计划)受试者中估计基于人群的先验,这些受试者是使用包括高 b 值在内的广泛采集方案获得的。在 MGH 数据集的子集和来自临床可比扫描仪的独立数据集上测试了具有和不具有基于人群的先验的不同方法的准确性和稳健性,这些数据集仅具有临床上合理的 dMRI 测量结果。

结果

与传统的均匀先验相比,基于人群的先验产生了更准确和稳健的参数估计,对于临床上可行的方案,而不会引入任何明显的偏差。

结论

使用所提出的基于贝叶斯的基于人群的先验可以在不改变采集方案的情况下,实现 NODDIDA 参数的临床可行和稳健估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1157/6771666/3c443aa89609/MRM-82-1553-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验