Quantitative Sustainability Assessment, Department of Technology, Management and Economics , Technical University of Denmark , Produktionstorvet 424 , 2800 Kongens Lyngby , Denmark.
School of Public Health , University of California , Berkeley , California 94720 , United States.
Environ Sci Technol. 2019 Jun 18;53(12):6855-6868. doi: 10.1021/acs.est.9b01800. Epub 2019 Jun 4.
We evaluate fine particulate matter (PM) exposure-response models to propose a consistent set of global effect factors for product and policy assessments across spatial scales and across urban and rural environments. Relationships among exposure concentrations and PM-attributable health effects largely depend on location, population density, and mortality rates. Existing effect factors build mostly on an essentially linear exposure-response function with coefficients from the American Cancer Society study. In contrast, the Global Burden of Disease analysis offers a nonlinear integrated exposure-response (IER) model with coefficients derived from numerous epidemiological studies covering a wide range of exposure concentrations. We explore the IER, additionally provide a simplified regression as a function of PM level, mortality rates, and severity, and compare results with effect factors derived from the recently published global exposure mortality model (GEMM). Uncertainty in effect factors is dominated by the exposure-response shape, background mortality, and geographic variability. Our central IER-based effect factor estimates for different regions do not differ substantially from previous estimates. However, IER estimates exhibit significant variability between locations as well as between urban and rural environments, driven primarily by variability in PM concentrations and mortality rates. Using the IER as the basis for effect factors presents a consistent picture of global PM-related effects for use in product and policy assessment frameworks.
我们评估细颗粒物 (PM) 暴露-反应模型,以提出一套在全球范围内适用于不同空间尺度、城市和农村环境的一致的全球效应因子,用于产品和政策评估。暴露浓度与 PM 归因健康影响之间的关系在很大程度上取决于地点、人口密度和死亡率。现有的效应因子主要建立在与美国癌症协会研究相关的基本线性暴露-反应函数上。相比之下,全球疾病负担分析提供了一个非线性综合暴露-反应 (IER) 模型,其系数来自涵盖广泛暴露浓度范围的众多流行病学研究。我们探索了 IER,另外提供了一个简化的回归函数,作为 PM 水平、死亡率和严重程度的函数,并将结果与最近发表的全球暴露死亡率模型 (GEMM) 得出的效应因子进行了比较。效应因子的不确定性主要由暴露-反应形状、背景死亡率和地理变异性决定。我们对不同地区的基于 IER 的效应因子估计值与之前的估计值没有显著差异。然而,IER 估计值在不同地点以及城市和农村环境之间存在显著差异,主要是由 PM 浓度和死亡率的变异性驱动的。使用 IER 作为效应因子的基础,可以为产品和政策评估框架提供全球 PM 相关效应的一致图景。